Threonine 98, the Pivotal Residue of Tissue Inhibitor of Metalloproteinases (TIMP)-1 in Metalloproteinase Recognition

Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous modulators of the zinc-dependent mammalian matrix metalloproteinases (MMPs) and their close associates, proteinases of the ADAM (adisintegrin and metalloproteinase) and ADAM with thrombospondin repeats families. There are four varian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-04, Vol.279 (17), p.17562-17569
Hauptverfasser: Lee, Meng-Huee, Rapti, Magdalini, Knaüper, Vera, Murphy, Gillian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous modulators of the zinc-dependent mammalian matrix metalloproteinases (MMPs) and their close associates, proteinases of the ADAM (adisintegrin and metalloproteinase) and ADAM with thrombospondin repeats families. There are four variants of TIMPs, and each has its defined set of metalloproteinase (MP) targets. TIMP-1, in particular, is inactive against several of the membrane-type MMPs (MT-MMPs), MMP-19, and the ADAM proteinase TACE (tumor necrosis factor-α-converting enzyme, ADAM-17). The molecular basis for such inactivity is unknown. Previously, we showed that TIMP-1 could be transformed into an active inhibitor against MT1-MMP by the replacement of threonine 98 residue with leucine (T98L). Here, we reveal that the T98L mutation has in fact transformed TIMP-1 into a versatile inhibitor against an array of MPs otherwise insensitive to wild-type TIMP-1; examples include TACE, MMP-19, and MT5-MMP. Using T98L as the scaffold, we created a TIMP-1 variant that is fully active against TACE. The binding affinity of the mutant (V4S/TIMP-3-AB-loop/V69L/T98L) (Kappi 0.14 nm) surpassed that of TIMP-3 (Kappi 0.22 nm), the only natural TIMP inhibitor of the enzyme. The requirement for leucine is absolute for the transformation in inhibitory pattern. On the other hand, the mutation has minimal impact on the MPs already well inhibited by wild-type TIMP-1, such as gelatinase-A and stromelysin-1. Not only have we unlocked the molecular basis for the inactivity of TIMP-1 against several of the MPs, but also our findings fundamentally modify the current beliefs on the molecular mechanism of TIMP-MP recognition and selectivity.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M312589200