Molecular Mechanisms of Cl- Transport by the Renal Na+-K+-Cl- Cotransporter
The 2nd transmembrane domain (tm) of the secretory Na+-K+-Cl- cotransporter (NKCC1) and of the kidney-specific isoform (NKCC2) has been shown to play an important role in cation transport. For NKCC2, by way of illustration, alternative splicing of exon 4, a 96-bp sequence from which tm2 is derived,...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2004-02, Vol.279 (7), p.5648-5654 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The 2nd transmembrane domain (tm) of the secretory Na+-K+-Cl- cotransporter (NKCC1) and of the kidney-specific isoform (NKCC2) has been shown to play an important role in cation transport. For NKCC2, by way of illustration, alternative splicing of exon 4, a 96-bp sequence from which tm2 is derived, leads to the formation of the NKCC2A and F variants that both exhibit unique affinities for cations. Of interest, the NKCC2 variants also exhibit substantial differences in Cl- affinity as well as in the residue composition of the first intracellular connecting segment (cs1a), which immediately follows tm2 and which too is derived from exon 4. In this study, we have prepared chimeras of the shark NKCC2A and F (saA and saF) to determine whether cs1a could play a role in Cl- transport; here, tm2 or cs1a in saF was replaced by the corresponding domain from saA (generating saA/F or saF/A, respectively). Functional analyses of these chimeras have shown that cs1a-specific residues account for most of the A-F difference in Cl- affinity. For example, Km(Cl-)s were ∼8 mm for saF/A and saA, and ∼70 mm for saA/F and saF. Intriguingly, variant residues in cs1a also affected cation transport; here, Km(Na+)s for the chimeras and for saA were all ∼20 mm, and Km(Rb+) all ∼2 mm. Regarding tm2, our studies have confirmed its importance in cation transport and have also identified novel properties for this domain. Taken together, our results demonstrate for the first time that an intracellular loop in NKCC contributes to the transport process perhaps by forming a flexible structure that positions itself between membrane spanning domains. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M311218200 |