Chronic High Glucose Lowers Pyruvate Dehydrogenase Activity in Islets through Enhanced Production of Long Chain Acyl-CoA
In islet β-cells, the high expression of pyruvate carboxylase and the functional importance of the downstream anaplerosis pathways result in a unique characteristic whereby high glucose and fatty acids both increase production of a key fatty acid metabolite, long chain acyl-CoA, for signaling and en...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2004-02, Vol.279 (9), p.7470-7475 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In islet β-cells, the high expression of pyruvate carboxylase and the functional importance of the downstream anaplerosis pathways result in a unique characteristic whereby high glucose and fatty acids both increase production of a key fatty acid metabolite, long chain acyl-CoA, for signaling and enzyme regulation in β-cells. We showed previously in islets that pyruvate dehydrogenase (PDH) activity is lowered by excess fatty acids (the so-called Randle effect). We have now investigated PDH activity and pyruvate metabolism in islets after 48-h culture at 16.7 mmol/liter glucose. Active PDH Vmax was lowered 65% by 48 h of high glucose, and this effect was markedly attenuated by co-culture with triacsin C, which inhibits acyl-CoA synthase. Despite the large reduction in PDH activity, glucose oxidation was twice normal. The reason was continued metabolism of pyruvate through pyruvate carboxylase (Vmax, 83% of control) and diversion of flux through the pyruvate-malate shuttle. The result was a 3-fold increase of the pyruvate concentration that overcame the lowered PDH activity by mass action as shown by glucose oxidation measured with [6-14C]glucose being twice normal. In addition, glucose-induced insulin secretion was 3-fold increased after 48 h of high glucose, and this effect was totally blocked by co-culture with triacsin C. These results show that a unique feature of islet β-cells is not only fatty acids but also excess glucose that impairs PDH activity. Also, a specialized trait of β-cells is a long chain acyl-CoA-mediated defense mechanism that prevents a reduction in glucose oxidation and consequently in insulin secretion. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M307921200 |