Chronic High Glucose Lowers Pyruvate Dehydrogenase Activity in Islets through Enhanced Production of Long Chain Acyl-CoA

In islet β-cells, the high expression of pyruvate carboxylase and the functional importance of the downstream anaplerosis pathways result in a unique characteristic whereby high glucose and fatty acids both increase production of a key fatty acid metabolite, long chain acyl-CoA, for signaling and en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-02, Vol.279 (9), p.7470-7475
Hauptverfasser: Liu, Ye Qi, Moibi, Jacob A., Leahy, Jack L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In islet β-cells, the high expression of pyruvate carboxylase and the functional importance of the downstream anaplerosis pathways result in a unique characteristic whereby high glucose and fatty acids both increase production of a key fatty acid metabolite, long chain acyl-CoA, for signaling and enzyme regulation in β-cells. We showed previously in islets that pyruvate dehydrogenase (PDH) activity is lowered by excess fatty acids (the so-called Randle effect). We have now investigated PDH activity and pyruvate metabolism in islets after 48-h culture at 16.7 mmol/liter glucose. Active PDH Vmax was lowered 65% by 48 h of high glucose, and this effect was markedly attenuated by co-culture with triacsin C, which inhibits acyl-CoA synthase. Despite the large reduction in PDH activity, glucose oxidation was twice normal. The reason was continued metabolism of pyruvate through pyruvate carboxylase (Vmax, 83% of control) and diversion of flux through the pyruvate-malate shuttle. The result was a 3-fold increase of the pyruvate concentration that overcame the lowered PDH activity by mass action as shown by glucose oxidation measured with [6-14C]glucose being twice normal. In addition, glucose-induced insulin secretion was 3-fold increased after 48 h of high glucose, and this effect was totally blocked by co-culture with triacsin C. These results show that a unique feature of islet β-cells is not only fatty acids but also excess glucose that impairs PDH activity. Also, a specialized trait of β-cells is a long chain acyl-CoA-mediated defense mechanism that prevents a reduction in glucose oxidation and consequently in insulin secretion.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M307921200