S-Glutathionylation Decreases Mg2+ Inhibition and S-Nitrosylation Enhances Ca2+ Activation of RyR1 Channels
We have analyzed the effects of the endogenous redoxactive agents S-nitrosoglutathione and glutathione disulfide, and the NO donor NOR-3, on calcium release kinetics mediated by ryanodine receptor channels. Incubation of triad-enriched sarcoplasmic reticulum vesicles isolated from mammalian skeletal...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2003-10, Vol.278 (44), p.42927-42935 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have analyzed the effects of the endogenous redoxactive agents S-nitrosoglutathione and glutathione disulfide, and the NO donor NOR-3, on calcium release kinetics mediated by ryanodine receptor channels. Incubation of triad-enriched sarcoplasmic reticulum vesicles isolated from mammalian skeletal muscle with these three agents elicits different responses. Glutathione disulfide significantly reduces the inhibitory effect of Mg2+ without altering Ca2+ activation of release kinetics, whereas NOR-3 enhances Ca2+ activation of release kinetics without altering Mg2+ inhibition. Incubation with S-nitrosoglutathione produces both effects; it significantly enhances Ca2+ activation of release kinetics and diminishes the inhibitory effect of Mg2+ on this process. Triad incubation with [35S]nitrosoglutathione at pCa 5 promoted 35S incorporation into 2.5 cysteine residues per channel monomer; this incorporation decreased significantly at pCa 9. These findings indicate that S-nitrosoglutathione supports S-glutathionylation as well as the reported S-nitrosylation of ryanodine receptor channels (Sun, J., Xu, L., Eu, J. P., Stamler, J. S., and Meissner, G. (2003) J. Biol. Chem. 278, 8184–8189). The combined results suggest that S-glutathionylation of specific cysteine residues can modulate channel inhibition by Mg2+, whereas S-nitrosylation of different cysteines can modulate the activation of the channel by Ca2+. Possible physiological and pathological implications of the activation of skeletal Ca2+ release channels by endogenous redox species are discussed. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M306969200 |