Sphingosine-dependent Protein Kinase-1, Directed to 14-3-3, Is Identified as the Kinase Domain of Protein Kinase Cδ
Some protein kinases are known to be activated by d-erythro-sphingosine (Sph) or N,N-dimethyl-d-erythro-sphingosine (DMS), but not by ceramide, Sph-1-P, other sphingolipids, or phospholipids. Among these, a specific protein kinase that phosphorylates Ser60, Ser59, or Ser58 of 14-3-3β, 14-3-3η, or 14...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2003-10, Vol.278 (42), p.41557-41565 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Some protein kinases are known to be activated by d-erythro-sphingosine (Sph) or N,N-dimethyl-d-erythro-sphingosine (DMS), but not by ceramide, Sph-1-P, other sphingolipids, or phospholipids. Among these, a specific protein kinase that phosphorylates Ser60, Ser59, or Ser58 of 14-3-3β, 14-3-3η, or 14-3-3ζ, respectively, was termed “sphingosine-dependent protein kinase-1” (SDK1) (Megidish, T., Cooper, J., Zhang, L., Fu, H., and Hakomori, S. (1998) J. Biol. Chem. 273, 21834–21845). We have now identified SDK1 as a protein having the C-terminal half kinase domain of protein kinase Cδ (PKCδ) based on the following observations. (i) Large-scale preparation and purification of proteins showing SDK1 activity from rat liver (by six steps of chromatography) gave a final fraction with an enhanced level of an ∼40-kDa protein band. This fraction had SDK1 activity ∼50,000-fold higher than that in the initial extract. (ii) This protein had ∼53% sequence identity to the Ser/Thr kinase domain of PKCδ based on peptide mapping using liquid chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry data. (iii) A search for amino acid homology based on the BLAST algorithm indicated that the only protein with high homology to the ∼40-kDa band is the kinase domain of PKCδ. The kinase activity of PKCδ did not depend on Sph or DMS; rather, it was inhibited by these sphingoid bases, i.e. PKCδ did not display any SDK1 activity. However, strong SDK1 activity became detectable when PKCδ was incubated with caspase-3, which releases the ∼40-kDa kinase domain. PKCδ and SDK1 showed different lipid requirements and substrate specificity, although both kinase activities were inhibited by common PKC inhibitors. The high susceptibility of SDK1 to Sph and DMS accounts for their important modulatory role in signal transduction. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M305294200 |