Conservation within the RIC-3 Gene Family

In Caenorhabditis elegans, the ric-3 gene is required for the maturation of multiple nicotinic acetylcholine receptors (nAChRs), whereas other neurotransmittergated channels expressed within the same cells are unaffected by the presence of RIC-3. Here we show that RIC-3 is a member of a conserved ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-09, Vol.278 (36), p.34411-34417
Hauptverfasser: Halevi, Sarah, Yassin, Lina, Eshel, Margalit, Sala, Francisco, Sala, Salvador, Criado, Manuel, Treinin, Millet
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Caenorhabditis elegans, the ric-3 gene is required for the maturation of multiple nicotinic acetylcholine receptors (nAChRs), whereas other neurotransmittergated channels expressed within the same cells are unaffected by the presence of RIC-3. Here we show that RIC-3 is a member of a conserved gene family with representatives in both vertebrates and invertebrates. All members of this family have two transmembrane domains followed by a coiled-coil domain. Expression of the human ric-3 homolog, hric3, like the C. elegans ric-3, enhances C. elegans DEG-3/DES-2, rat α7, and human α7 nAChR-dependent whole-cell current amplitudes in Xenopus leavis oocytes, thus demonstrating functional conservation. However, hric3 also reduces human α4β2 and α3β4 nAChR-dependent whole-cell current amplitudes. Thus, hric3 shows differential effects on human nAChRs unlike the observed uniform effect of ric-3 on C. elegans nAChRs. Moreover, hric3 totally abolished currents evoked by 5-HT3 serotonin receptors, whereas it barely modified α1 glycine receptor currents. With this caveat, RIC-3 belongs to a conserved family of genes likely to regulate nAChR-mediated transmission throughout evolution. Analysis of transcripts encoded by the hric3 locus shows that it encodes for multiple transcripts, likely to produce multiple hric3 isoforms, and that hric3 is expressed in neurons and muscles, thus enabling its interactions with nAChRs in vivo.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M300170200