Complex of Pregnancy-associated Plasma Protein-A and the Proform of Eosinophil Major Basic Protein

Pregnancy-associated plasma protein-A (PAPP-A) is a metzincin superfamily metalloproteinase responsible for cleavage of insulin-like growth factor-binding protein-4, thus causing release of bound insulin-like growth factor. PAPP-A is secreted as a dimer of 400 kDa but circulates in pregnancy as a di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-01, Vol.278 (4), p.2106-2117
Hauptverfasser: Overgaard, Michael T., Sørensen, Esben S., Stachowiak, Damian, Boldt, Henning B., Kristensen, Lene, Sottrup-Jensen, Lars, Oxvig, Claus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pregnancy-associated plasma protein-A (PAPP-A) is a metzincin superfamily metalloproteinase responsible for cleavage of insulin-like growth factor-binding protein-4, thus causing release of bound insulin-like growth factor. PAPP-A is secreted as a dimer of 400 kDa but circulates in pregnancy as a disulfide-bound 500-kDa 2:2 complex with the proform of eosinophil major basic protein (pro-MBP), recently shown to function as a proteinase inhibitor of PAPP-A. Except for PAPP-A2, PAPP-A does not share global similarity with other proteins. Three lin-notch (LNR or LIN-12) modules and five complement control protein modules (also known as SCR modules) have been identified in PAPP-A by sequence similarity with other proteins, but no data are available that allow unambiguous prediction of disulfide bonds of these modules. To establish the connectivities of cysteine residues of the PAPP-A·pro-MBP complex, biochemical analyses of peptides derived from purified protein were performed. The PAPP-A subunit contains a total of 82 cysteine residues, of which 81 have been accounted for. The pro-MBP subunit contains 12 cysteine residues, of which 10 have been accounted for. Within the 2:2 complex, PAPP-A is dimerized by a single disulfide bond; pro-MBP is dimerized by two disulfides, and each PAPP-A subunit is connected to a pro-MBP subunit by two disulfide bonds. All other disulfides are intrachain bridges. We also show that of 13 potential sites for N -linked carbohydrate substitution of the PAPP-A subunit, 11 are occupied. The large number of disulfide bonds of the PAPP-A·pro-MBP complex imposes many restraints on polypeptide folding, and knowledge of the disulfide pattern of PAPP-A will facilitate structural studies based on recombinant expression of individual, putative PAPP-A domains. Furthermore, it will allow rational experimental design of functional studies aimed at understanding the formation of the PAPP-A·pro-MBP complex, as well as the inhibitory mechanism of pro-MBP.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M208777200