Association of the Death-inducing Signaling Complex with Microdomains after Triggering through CD95/Fas

In this investigation we show that the death-inducing signaling complex (DISC) associates with glycosphingolipid-enriched microdomains (GEM) upon CD95/Fas engagement. We primarily analyzed the ganglioside pattern and composition of GEM after triggering through CD95/Fas and observed that GM3 is the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-03, Vol.278 (10), p.8309-8315
Hauptverfasser: Garofalo, Tina, Misasi, Roberta, Mattei, Vincenzo, Giammarioli, Anna Maria, Malorni, Walter, Pontieri, Giuseppe M., Pavan, Antonio, Sorice, Maurizio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this investigation we show that the death-inducing signaling complex (DISC) associates with glycosphingolipid-enriched microdomains (GEM) upon CD95/Fas engagement. We primarily analyzed the ganglioside pattern and composition of GEM after triggering through CD95/Fas and observed that GM3 is the main ganglioside constituent of GEM. Stimulation with anti-CD95/Fas did not cause translocation of gangliosides within or from the GEM fraction. Scanning confocal microscopy showed that triggering through CD95/Fas induced a significant GM3-caspase-8 association, as revealed by nearly complete colocalization areas. Coimmunoprecipitation experiments demonstrated that GM3 and GM1 were immunoprecipitated by anti-caspase-8 only after triggering through CD95/Fas. This association was supported by the recruitment of caspase-8, as well as of CD95/Fas, to GEM upon CD95/Fas engagement, as revealed by the analysis of linear sucrose gradient fractions. It indicates that the DISC associates with GEM; no changes were observed in the distribution of caspase-9. The disruption of GEM by methyl-β-cyclodextrin prevented DNA fragmentation, as well as CD95/Fas clustering on the cell surface, demonstrating a role for GEM in initiating of Fas signaling. These findings strongly suggest a role for gangliosides as structural components of the membrane multimolecular signaling complex involved in CD95/Fas receptor-mediated apoptotic pathway.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M207618200