Closed Site Complexes of Adenine Phosphoribosyltransferase fromGiardia lamblia Reveal a Mechanism of Ribosyl Migration

The adenine phosphoribosyltransferase (APRTase) from Giardia lamblia was co-crystallized with 9-deazaadenine and sulfate or with 9-deazaadenine and Mg-phosphoribosylpyrophosphate. The complexes were solved and refined to 1.85 and 1.95 Å resolution. Giardia APRTase is a symmetric homodimer with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-10, Vol.277 (42), p.39981-39988
Hauptverfasser: Shi, Wuxian, Sarver, Anne E., Wang, Ching C., Tanaka, Kelly S.E., Almo, Steven C., Schramm, Vern L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adenine phosphoribosyltransferase (APRTase) from Giardia lamblia was co-crystallized with 9-deazaadenine and sulfate or with 9-deazaadenine and Mg-phosphoribosylpyrophosphate. The complexes were solved and refined to 1.85 and 1.95 Å resolution. Giardia APRTase is a symmetric homodimer with the monomers built around Rossman fold cores, an element common to all known purine phosphoribosyltransferases. The catalytic sites are capped with a small hood domain that is unique to the APRTases. These structures reveal several features relevant to the catalytic function of APRTase: 1) a non-proline cis peptide bond (Glu 61 –Ser 62 ) is required to form the pyrophosphate binding site in the APRTase·9dA·MgPRPP complex but is a trans peptide bond in the absence of pyrophosphate group, as observed in the APRTase·9dA·SO 4 complex; 2) a catalytic site loop is closed and fully ordered in both complexes, with Glu 100 from the catalytic loop acting as the acid/base for protonation/deprotonation of N-7 of the adenine ring; 3) the pyrophosphoryl charge is neutralized by a single Mg 2+ ion and Arg 63 , in contrast to the hypoxanthine-guanine phosphoribosyltransferases, which use two Mg 2+ ions; and 4) the nearest structural neighbors to APRTases are the orotate phosphoribosyltransferases, suggesting different paths of evolution for adenine relative to other purine PRTases. An overlap comparison of AMP and 9-deazaadenine plus Mg-PRPP at the catalytic sites of APRTases indicated that reaction coordinate motion involves a 2.1-Å excursion of the ribosyl anomeric carbon, whereas the adenine ring and the 5-phosphoryl group remained fixed. G. lamblia APRTase therefore provides another example of nucleophilic displacement by electrophile migration.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M205596200