Effect of Point Mutations in the N Terminus of the Lentivirus Lytic Peptide-1 Sequence of Human Immunodeficiency Virus Type 1 Transmembrane Protein gp41 on Env Stability

To understand the role of the lentivirus lytic peptide-1 region of the human immunodeficiency virus type 1 transmembrane glycoprotein (gp) 41 in viral infection, we examined the effects on virus replication of single amino acid deletions spanning this region in an infectious provirus of the HXB2 str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-05, Vol.277 (18), p.15363-15375
Hauptverfasser: Lee, Sheau-Fen, Ko, Chiung-Yuan, Wang, Chin-Tien, Chen, Steve S.-L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To understand the role of the lentivirus lytic peptide-1 region of the human immunodeficiency virus type 1 transmembrane glycoprotein (gp) 41 in viral infection, we examined the effects on virus replication of single amino acid deletions spanning this region in an infectious provirus of the HXB2 strain. Among the mutants analyzed, only the deletion of one of the two adjacent valine residues located at positions 832 and 833 (termed the Δ833 mutant for simplicity) greatly reduced the steady-state, cell-associated levels of the Env precursor and gp120, as opposed to the wild-type virus. The altered Env phenotype resulted in severely impaired virus infectivity and gp120 incorporation into this mutant virion. Analyses of additional mutants with deletions at Ile-830, Ala-836, and Ile-840 demonstrated that the Δ830 mutant exhibited the most significant inhibitory effect on Env steady-state expression. These results indicate that the N terminus of the lentivirus lytic peptide-1 region is critical for Env steady-state expression. Among the mutant viruses encoding Env proteins in which residues Val-832 and Val-833 were individually substituted by nonconserved amino acids Ala, Ser, or Pro, which were expected to disrupt the α-helical structure in the increasingly severe manner of Pro > Ser > Ala, only the 833P mutant exhibited significantly reduced steady-state Env expression. Pulse labeling and pulse-chase studies demonstrated that the Δ830, Δ833, and 833P mutants of Env proteins degraded more rapidly in a time-dependent manner after biosynthesis than did the wild-type Env. The results indicate that residue 830 and 833 mutations are likely to induce a conformational change in Env that targets the mutant protein for cellular degradation. Our study has implications about the structural determinants located at the N terminus of the lentivirus lytic peptide-1 sequence of gp41 that affect the fate of Env in virus-infected cells.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M201479200