Human Lutropin (hLH) and Choriogonadotropin (CG) Are Assembled by Different Pathways

The glycoprotein hormones are all structurally related heterodimers consisting of an α-subunit and a ligand-specific β-subunit that confers their unique biological activity. Crystal structures showed how the β-subunit surrounds a part of the α-subunit, and we showed the existence of the two mechanis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2014-05, Vol.289 (20), p.14360-14369
Hauptverfasser: Bernard, Michael P., Lin, Win, Kholodovych, Vladyslav, Moyle, William R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The glycoprotein hormones are all structurally related heterodimers consisting of an α-subunit and a ligand-specific β-subunit that confers their unique biological activity. Crystal structures showed how the β-subunit surrounds a part of the α-subunit, and we showed the existence of the two mechanisms responsible for that assembly. In human choriogonadotropin, the β-subunit is folded before the subunits dock, and the α-subunit becomes incorporated into the dimer by a mechanism we termed “threading,” passing between parts of the preassembled β-subunit. Here, we show that the human lutropin β-subunit is not folded completely prior to its interaction with the α-subunit and show that docking of the subunits enables the α-subunit to serve as a chaperone to the β-subunit. Based on data described here, we propose that the α-subunit facilitates formation of the human lutropin β-subunit by two mechanisms. First, the cystine knot of the α-subunit potentiates formation of the β-subunit cystine knot, and second, contacts between α-subunit loop 2 and a hydrophobic tail in the β-subunit facilitate formation of the seatbelt latch disulfide, which stabilizes the heterodimer. The primary influence of the α-subunit was seen when the hydrophobic tail was present or absent, but the secondary mechanism was required only when the hydrophobic tail of the β-subunit was present. During the evolution of human choriogonadotropin, neither of these α-subunit roles was necessary for folding of the β-subunit. The complex mechanism for lutropin assembly may be required to provide an additional control on its positive feedback function in vertebrate reproduction. Lutropin and choriogonadotropin are essential for human fertility. Human lutropin and choriogonadotropin assemble by two separate folding pathways. The α-subunit of lutropin has a key role in β-subunit folding. The unique folding properties of LH were retained by having an evolutionary advantage for most vertebrate fertility.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.535609