Orientation and Cellular Distribution of Membrane-bound Catechol-O-methyltransferase in Cortical Neurons

Catechol-O-methyltransferase (COMT) is a key enzyme for inactivation and metabolism of catechols, including dopamine, norepinephrine, caffeine, and estrogens. It plays an important role in cognition, arousal, pain sensitivity, and stress reactivity in humans and in animal models. The human COMT gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-10, Vol.286 (40), p.34752-34760
Hauptverfasser: Chen, Jingshan, Song, Jian, Yuan, Peixiong, Tian, Qingjun, Ji, Yuanyuan, Ren-Patterson, Renee, Liu, Guangping, Sei, Yoshitasu, Weinberger, Daniel R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Catechol-O-methyltransferase (COMT) is a key enzyme for inactivation and metabolism of catechols, including dopamine, norepinephrine, caffeine, and estrogens. It plays an important role in cognition, arousal, pain sensitivity, and stress reactivity in humans and in animal models. The human COMT gene is associated with a diverse spectrum of human behaviors and diseases from cognition and psychiatric disorders to chronic pain and cancer. There are two major forms of COMT proteins, membrane-bound (MB) COMT and soluble (S) COMT. MB-COMT is the main form in the brain. The cellular distribution of MB-COMT in cortical neurons remains unclear and the orientation of MB-COMT on the cellular membrane is controversial. In this study, we demonstrate that MB-COMT is located in the cell body and in axons and dendrites of rat cortical neurons. Analyses of MB-COMT orientation with computer simulation, flow cytometry and a cell surface enzyme assay reveal that the C-terminal catalytic domain of MB-COMT is in the extracellular space, which suggests that MB-COMT can inactivate synaptic and extrasynaptic dopamine on the surface of presynaptic and postsynaptic neurons. Finally, we show that the COMT inhibitor tolcapone induces cell death via the mechanism of apoptosis, and its cytotoxicity is dependent on dosage and correlated with COMT Val/Met genotypes in human lymphoblastoid cells. These results suggest that MB-COMT specific inhibitors can be developed and that tolcapone may be less hazardous at low doses and in specific genetic backgrounds. Background: COMT is a key enzyme for inactivation and metabolism of catechols, including dopamine. Results: MB-COMT is located in the cell body, axons and dendrites of cortical neurons, and oriented with its C-terminal catalytic domain in the extracellular space. Conclusion: MB-COMT can inactivate synaptic and extrasynaptic dopamine on surface of cortical neurons. Significance: MB-COMT specific inhibitors can be developed and may be less cytotoxic.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M111.262790