In Vitro Evolution of Recognition Specificity Mediated by SH3 Domains Reveals Target Recognition Rules

We have designed a repertoire of 10 7 different SH3 domains by grafting the residues that are represented in the binding surfaces of natural SH3 domains onto the scaffold of the human Abl-SH3 domain. This phage-displayed library was screened by affinity selection for SH3 domains that bind to the syn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-06, Vol.277 (24), p.21666-21674
Hauptverfasser: Panni, Simona, Dente, Luciana, Cesareni, Gianni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have designed a repertoire of 10 7 different SH3 domains by grafting the residues that are represented in the binding surfaces of natural SH3 domains onto the scaffold of the human Abl-SH3 domain. This phage-displayed library was screened by affinity selection for SH3 domains that bind to the synthetic peptides, APTYPPPLPP and LSSRPLPTLPSP, which are peptide ligands for the human Abl or Src SH3 domains, respectively. By characterizing the isolates, we have observed that as few as two or three amino acid substitutions lead to dramatic changes in recognition specificity. We propose that the ability to shift recognition specificity with a small number of amino acid replacements is an important evolutionary characteristic of protein binding modules. Furthermore, we have used the information obtained by these in vitro evolution experiments to generate a scoring matrix that evaluates the probability that any SH3 domain binds to the peptide ligands for the Abl and Src SH3 domains. A table of predictions for the 28 SH3 domains of baker's yeast is presented.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M109788200