Structural Characterization of Human Recombinant and Bone-derived Bone Sialoprotein
Human bone sialoprotein (BSP) comprises 15% of the total noncollagenous proteins in bone and is thought to be involved in bone mineralization and remodeling. Recent data suggest a role for BSP in breast cancer and the development of bone metastases. We have produced full-length recombinant BSP in a...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2001-09, Vol.276 (39), p.36839-36848 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human bone sialoprotein (BSP) comprises 15% of the total noncollagenous proteins in bone and is thought to be involved in bone mineralization and remodeling. Recent data suggest a role for BSP in breast cancer and the development of bone metastases. We have produced full-length recombinant BSP in a human cell line and purified the protein from human bone retaining the native structure with proper folding and post-translational modifications. Mass spectrometry of bone-derived BSP revealed an average mass of 49 kDa and for recombinant BSP 57 kDa. The post-translational modifications contribute 30–40%. Carbohydrate analysis revealed 10 different complex-typeN-glycans on both proteins and eight differentO-glycans on recombinant BSP, four of those were found on bone-derived BSP. We could identify eight threonines modified byO-glycans, leaving the C terminus of the protein free of glycans. The recombinant protein showed similar secondary structures as bone-derived BSP. BSP was visualized in electron microscopy as a globule linked to a thread-like structure. The affinity for hydroxyapatite was higher for bone-derived BSP than for recombinant BSP. Cell adhesion assays showed that the binding of BSP to cells can be reversibly diminished by denaturation. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M105689200 |