Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter

Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-12, Vol.275 (52), p.40817-40826
Hauptverfasser: Bandyopadhyay, Gautam, Sajan, Mini P., Kanoh, Yoshinori, Standaert, Mary L., Burke, Terrance R., Quon, Michael J., Reed, Brent C., Dikic, Ivan, Noel, Laura E., Newgard, Christopher B., Farese, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40826
container_issue 52
container_start_page 40817
container_title The Journal of biological chemistry
container_volume 275
creator Bandyopadhyay, Gautam
Sajan, Mini P.
Kanoh, Yoshinori
Standaert, Mary L.
Burke, Terrance R.
Quon, Michael J.
Reed, Brent C.
Dikic, Ivan
Noel, Laura E.
Newgard, Christopher B.
Farese, Robert
description Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C but nevertheless cytochalasin B-inhibitable; (b) dependent upon proline-rich tyrosine kinase-2 (PYK2), GRB2, SOS, RAS, RAF, and MEK1; and (c) amplified by overexpression of the Glut1, but not Glut2, Glut3, or Glut4, glucose transporter. This amplifying effect was independent of glucose uptake but dependent on residues 463–468, IASGFR, in the Glut1 C terminus. Accordingly, glucose effects on ERK were amplified by expression of Glut4/Glut1 or Glut2/Glut1 chimeras containing IASGFR but not by Glut1/Glut4 or Glut1/Glut2 chimeras lacking these residues. Also, deletion of Glut1 residues 469–492 was without effect, but mutations involving serine 465 or arginine 468 yielded dominant-negative forms that inhibited glucose-dependent ERK activation. Glucose stimulated the phosphorylation of tyrosine residues 402 and 881 in PYK2 and binding of PYK2 to Myc-Glut1. Our findings suggest that: (a) glucose activates the GRB2/SOS/RAS/RAF/MEK1/ERK pathway by a mechanism that requires PYK2 and residues 463–468, IASGFR, in the Glut1 C terminus and (b) Glut1 serves as a sensor, transducer, and amplifier for glucose signaling to PYK2 and ERK.
doi_str_mv 10.1074/jbc.M007920200
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M007920200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819556058</els_id><sourcerecordid>S0021925819556058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-5105a6086d1caa66ca3c90d8b9cbde4efd88d4b2ed3c548d6b74d78a5494a9f83</originalsourceid><addsrcrecordid>eNp1kEFP2zAYhi00RDvguuPkww7j4GInduIcUQVsAsSkFYmb5dhfE1dpUtluB7-HP4qrdOKEL9ZnPY_1fi9C3xidMVryy1VtZg-UllVGM0qP0JRRmZNcsOcvaEppxkiVCTlBX0NY0XR4xU7QhLGklFUxRW-33dYMAfCViW6nIwT84OLQQE_04cXiP36I4Hp853qd0J_XL9FrA1237bTHf13T6454aNK4x0fsAsfWD9um3eud64F4Z1q8ePVDSNOBIhnWvU0o4JQkMvw_z8LrPmwGH8GfoeOl7gKcH-5T9HRzvZj_IvePt7_nV_fE8FJEIhgVuqCysMxoXRRG56aiVtaVqS1wWFopLa8zsLkRXNqiLrktpRa84rpayvwUzcZ_TYoYPCzVxru19q-KUbVvW6W21UfbSfg-CpttvQb7gR_qTcCPEWhd0_5zHlTtBtPCWmWlUCJTnEpWJkyOGKTtdg68CsZBb8AmxURlB_dZhHeoZ519</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bandyopadhyay, Gautam ; Sajan, Mini P. ; Kanoh, Yoshinori ; Standaert, Mary L. ; Burke, Terrance R. ; Quon, Michael J. ; Reed, Brent C. ; Dikic, Ivan ; Noel, Laura E. ; Newgard, Christopher B. ; Farese, Robert</creator><creatorcontrib>Bandyopadhyay, Gautam ; Sajan, Mini P. ; Kanoh, Yoshinori ; Standaert, Mary L. ; Burke, Terrance R. ; Quon, Michael J. ; Reed, Brent C. ; Dikic, Ivan ; Noel, Laura E. ; Newgard, Christopher B. ; Farese, Robert</creatorcontrib><description>Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C but nevertheless cytochalasin B-inhibitable; (b) dependent upon proline-rich tyrosine kinase-2 (PYK2), GRB2, SOS, RAS, RAF, and MEK1; and (c) amplified by overexpression of the Glut1, but not Glut2, Glut3, or Glut4, glucose transporter. This amplifying effect was independent of glucose uptake but dependent on residues 463–468, IASGFR, in the Glut1 C terminus. Accordingly, glucose effects on ERK were amplified by expression of Glut4/Glut1 or Glut2/Glut1 chimeras containing IASGFR but not by Glut1/Glut4 or Glut1/Glut2 chimeras lacking these residues. Also, deletion of Glut1 residues 469–492 was without effect, but mutations involving serine 465 or arginine 468 yielded dominant-negative forms that inhibited glucose-dependent ERK activation. Glucose stimulated the phosphorylation of tyrosine residues 402 and 881 in PYK2 and binding of PYK2 to Myc-Glut1. Our findings suggest that: (a) glucose activates the GRB2/SOS/RAS/RAF/MEK1/ERK pathway by a mechanism that requires PYK2 and residues 463–468, IASGFR, in the Glut1 C terminus and (b) Glut1 serves as a sensor, transducer, and amplifier for glucose signaling to PYK2 and ERK.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M007920200</identifier><identifier>PMID: 11007796</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3T3 Cells ; Adipocytes - metabolism ; Animals ; Deoxyglucose - metabolism ; Disaccharides - pharmacology ; Focal Adhesion Kinase 2 ; Glucose - pharmacology ; Glucose Transporter Type 1 ; Glucose Transporter Type 2 ; Mice ; Mitogen-Activated Protein Kinases - metabolism ; Monosaccharide Transport Proteins - physiology ; Muscle, Smooth, Vascular - cytology ; Muscle, Smooth, Vascular - metabolism ; Protein-Tyrosine Kinases - physiology ; Rats</subject><ispartof>The Journal of biological chemistry, 2000-12, Vol.275 (52), p.40817-40826</ispartof><rights>2000 © 2000 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-5105a6086d1caa66ca3c90d8b9cbde4efd88d4b2ed3c548d6b74d78a5494a9f83</citedby><cites>FETCH-LOGICAL-c475t-5105a6086d1caa66ca3c90d8b9cbde4efd88d4b2ed3c548d6b74d78a5494a9f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11007796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bandyopadhyay, Gautam</creatorcontrib><creatorcontrib>Sajan, Mini P.</creatorcontrib><creatorcontrib>Kanoh, Yoshinori</creatorcontrib><creatorcontrib>Standaert, Mary L.</creatorcontrib><creatorcontrib>Burke, Terrance R.</creatorcontrib><creatorcontrib>Quon, Michael J.</creatorcontrib><creatorcontrib>Reed, Brent C.</creatorcontrib><creatorcontrib>Dikic, Ivan</creatorcontrib><creatorcontrib>Noel, Laura E.</creatorcontrib><creatorcontrib>Newgard, Christopher B.</creatorcontrib><creatorcontrib>Farese, Robert</creatorcontrib><title>Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C but nevertheless cytochalasin B-inhibitable; (b) dependent upon proline-rich tyrosine kinase-2 (PYK2), GRB2, SOS, RAS, RAF, and MEK1; and (c) amplified by overexpression of the Glut1, but not Glut2, Glut3, or Glut4, glucose transporter. This amplifying effect was independent of glucose uptake but dependent on residues 463–468, IASGFR, in the Glut1 C terminus. Accordingly, glucose effects on ERK were amplified by expression of Glut4/Glut1 or Glut2/Glut1 chimeras containing IASGFR but not by Glut1/Glut4 or Glut1/Glut2 chimeras lacking these residues. Also, deletion of Glut1 residues 469–492 was without effect, but mutations involving serine 465 or arginine 468 yielded dominant-negative forms that inhibited glucose-dependent ERK activation. Glucose stimulated the phosphorylation of tyrosine residues 402 and 881 in PYK2 and binding of PYK2 to Myc-Glut1. Our findings suggest that: (a) glucose activates the GRB2/SOS/RAS/RAF/MEK1/ERK pathway by a mechanism that requires PYK2 and residues 463–468, IASGFR, in the Glut1 C terminus and (b) Glut1 serves as a sensor, transducer, and amplifier for glucose signaling to PYK2 and ERK.</description><subject>3T3 Cells</subject><subject>Adipocytes - metabolism</subject><subject>Animals</subject><subject>Deoxyglucose - metabolism</subject><subject>Disaccharides - pharmacology</subject><subject>Focal Adhesion Kinase 2</subject><subject>Glucose - pharmacology</subject><subject>Glucose Transporter Type 1</subject><subject>Glucose Transporter Type 2</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Monosaccharide Transport Proteins - physiology</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Protein-Tyrosine Kinases - physiology</subject><subject>Rats</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFP2zAYhi00RDvguuPkww7j4GInduIcUQVsAsSkFYmb5dhfE1dpUtluB7-HP4qrdOKEL9ZnPY_1fi9C3xidMVryy1VtZg-UllVGM0qP0JRRmZNcsOcvaEppxkiVCTlBX0NY0XR4xU7QhLGklFUxRW-33dYMAfCViW6nIwT84OLQQE_04cXiP36I4Hp853qd0J_XL9FrA1237bTHf13T6454aNK4x0fsAsfWD9um3eud64F4Z1q8ePVDSNOBIhnWvU0o4JQkMvw_z8LrPmwGH8GfoeOl7gKcH-5T9HRzvZj_IvePt7_nV_fE8FJEIhgVuqCysMxoXRRG56aiVtaVqS1wWFopLa8zsLkRXNqiLrktpRa84rpayvwUzcZ_TYoYPCzVxru19q-KUbVvW6W21UfbSfg-CpttvQb7gR_qTcCPEWhd0_5zHlTtBtPCWmWlUCJTnEpWJkyOGKTtdg68CsZBb8AmxURlB_dZhHeoZ519</recordid><startdate>20001229</startdate><enddate>20001229</enddate><creator>Bandyopadhyay, Gautam</creator><creator>Sajan, Mini P.</creator><creator>Kanoh, Yoshinori</creator><creator>Standaert, Mary L.</creator><creator>Burke, Terrance R.</creator><creator>Quon, Michael J.</creator><creator>Reed, Brent C.</creator><creator>Dikic, Ivan</creator><creator>Noel, Laura E.</creator><creator>Newgard, Christopher B.</creator><creator>Farese, Robert</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001229</creationdate><title>Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter</title><author>Bandyopadhyay, Gautam ; Sajan, Mini P. ; Kanoh, Yoshinori ; Standaert, Mary L. ; Burke, Terrance R. ; Quon, Michael J. ; Reed, Brent C. ; Dikic, Ivan ; Noel, Laura E. ; Newgard, Christopher B. ; Farese, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-5105a6086d1caa66ca3c90d8b9cbde4efd88d4b2ed3c548d6b74d78a5494a9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>3T3 Cells</topic><topic>Adipocytes - metabolism</topic><topic>Animals</topic><topic>Deoxyglucose - metabolism</topic><topic>Disaccharides - pharmacology</topic><topic>Focal Adhesion Kinase 2</topic><topic>Glucose - pharmacology</topic><topic>Glucose Transporter Type 1</topic><topic>Glucose Transporter Type 2</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Monosaccharide Transport Proteins - physiology</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Protein-Tyrosine Kinases - physiology</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandyopadhyay, Gautam</creatorcontrib><creatorcontrib>Sajan, Mini P.</creatorcontrib><creatorcontrib>Kanoh, Yoshinori</creatorcontrib><creatorcontrib>Standaert, Mary L.</creatorcontrib><creatorcontrib>Burke, Terrance R.</creatorcontrib><creatorcontrib>Quon, Michael J.</creatorcontrib><creatorcontrib>Reed, Brent C.</creatorcontrib><creatorcontrib>Dikic, Ivan</creatorcontrib><creatorcontrib>Noel, Laura E.</creatorcontrib><creatorcontrib>Newgard, Christopher B.</creatorcontrib><creatorcontrib>Farese, Robert</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandyopadhyay, Gautam</au><au>Sajan, Mini P.</au><au>Kanoh, Yoshinori</au><au>Standaert, Mary L.</au><au>Burke, Terrance R.</au><au>Quon, Michael J.</au><au>Reed, Brent C.</au><au>Dikic, Ivan</au><au>Noel, Laura E.</au><au>Newgard, Christopher B.</au><au>Farese, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2000-12-29</date><risdate>2000</risdate><volume>275</volume><issue>52</issue><spage>40817</spage><epage>40826</epage><pages>40817-40826</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C but nevertheless cytochalasin B-inhibitable; (b) dependent upon proline-rich tyrosine kinase-2 (PYK2), GRB2, SOS, RAS, RAF, and MEK1; and (c) amplified by overexpression of the Glut1, but not Glut2, Glut3, or Glut4, glucose transporter. This amplifying effect was independent of glucose uptake but dependent on residues 463–468, IASGFR, in the Glut1 C terminus. Accordingly, glucose effects on ERK were amplified by expression of Glut4/Glut1 or Glut2/Glut1 chimeras containing IASGFR but not by Glut1/Glut4 or Glut1/Glut2 chimeras lacking these residues. Also, deletion of Glut1 residues 469–492 was without effect, but mutations involving serine 465 or arginine 468 yielded dominant-negative forms that inhibited glucose-dependent ERK activation. Glucose stimulated the phosphorylation of tyrosine residues 402 and 881 in PYK2 and binding of PYK2 to Myc-Glut1. Our findings suggest that: (a) glucose activates the GRB2/SOS/RAS/RAF/MEK1/ERK pathway by a mechanism that requires PYK2 and residues 463–468, IASGFR, in the Glut1 C terminus and (b) Glut1 serves as a sensor, transducer, and amplifier for glucose signaling to PYK2 and ERK.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11007796</pmid><doi>10.1074/jbc.M007920200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2000-12, Vol.275 (52), p.40817-40826
issn 0021-9258
1083-351X
language eng
recordid cdi_crossref_primary_10_1074_jbc_M007920200
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 3T3 Cells
Adipocytes - metabolism
Animals
Deoxyglucose - metabolism
Disaccharides - pharmacology
Focal Adhesion Kinase 2
Glucose - pharmacology
Glucose Transporter Type 1
Glucose Transporter Type 2
Mice
Mitogen-Activated Protein Kinases - metabolism
Monosaccharide Transport Proteins - physiology
Muscle, Smooth, Vascular - cytology
Muscle, Smooth, Vascular - metabolism
Protein-Tyrosine Kinases - physiology
Rats
title Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose%20Activates%20Mitogen-activated%20Protein%20Kinase%20(Extracellular%20Signal-regulated%20Kinase)%20through%20Proline-rich%20Tyrosine%20Kinase-2%20and%20the%20Glut1%20Glucose%20Transporter&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bandyopadhyay,%20Gautam&rft.date=2000-12-29&rft.volume=275&rft.issue=52&rft.spage=40817&rft.epage=40826&rft.pages=40817-40826&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M007920200&rft_dat=%3Celsevier_cross%3ES0021925819556058%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/11007796&rft_els_id=S0021925819556058&rfr_iscdi=true