Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter
Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C bu...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2000-12, Vol.275 (52), p.40817-40826 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40826 |
---|---|
container_issue | 52 |
container_start_page | 40817 |
container_title | The Journal of biological chemistry |
container_volume | 275 |
creator | Bandyopadhyay, Gautam Sajan, Mini P. Kanoh, Yoshinori Standaert, Mary L. Burke, Terrance R. Quon, Michael J. Reed, Brent C. Dikic, Ivan Noel, Laura E. Newgard, Christopher B. Farese, Robert |
description | Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C but nevertheless cytochalasin B-inhibitable; (b) dependent upon proline-rich tyrosine kinase-2 (PYK2), GRB2, SOS, RAS, RAF, and MEK1; and (c) amplified by overexpression of the Glut1, but not Glut2, Glut3, or Glut4, glucose transporter. This amplifying effect was independent of glucose uptake but dependent on residues 463–468, IASGFR, in the Glut1 C terminus. Accordingly, glucose effects on ERK were amplified by expression of Glut4/Glut1 or Glut2/Glut1 chimeras containing IASGFR but not by Glut1/Glut4 or Glut1/Glut2 chimeras lacking these residues. Also, deletion of Glut1 residues 469–492 was without effect, but mutations involving serine 465 or arginine 468 yielded dominant-negative forms that inhibited glucose-dependent ERK activation. Glucose stimulated the phosphorylation of tyrosine residues 402 and 881 in PYK2 and binding of PYK2 to Myc-Glut1. Our findings suggest that: (a) glucose activates the GRB2/SOS/RAS/RAF/MEK1/ERK pathway by a mechanism that requires PYK2 and residues 463–468, IASGFR, in the Glut1 C terminus and (b) Glut1 serves as a sensor, transducer, and amplifier for glucose signaling to PYK2 and ERK. |
doi_str_mv | 10.1074/jbc.M007920200 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M007920200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819556058</els_id><sourcerecordid>S0021925819556058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-5105a6086d1caa66ca3c90d8b9cbde4efd88d4b2ed3c548d6b74d78a5494a9f83</originalsourceid><addsrcrecordid>eNp1kEFP2zAYhi00RDvguuPkww7j4GInduIcUQVsAsSkFYmb5dhfE1dpUtluB7-HP4qrdOKEL9ZnPY_1fi9C3xidMVryy1VtZg-UllVGM0qP0JRRmZNcsOcvaEppxkiVCTlBX0NY0XR4xU7QhLGklFUxRW-33dYMAfCViW6nIwT84OLQQE_04cXiP36I4Hp853qd0J_XL9FrA1237bTHf13T6454aNK4x0fsAsfWD9um3eud64F4Z1q8ePVDSNOBIhnWvU0o4JQkMvw_z8LrPmwGH8GfoeOl7gKcH-5T9HRzvZj_IvePt7_nV_fE8FJEIhgVuqCysMxoXRRG56aiVtaVqS1wWFopLa8zsLkRXNqiLrktpRa84rpayvwUzcZ_TYoYPCzVxru19q-KUbVvW6W21UfbSfg-CpttvQb7gR_qTcCPEWhd0_5zHlTtBtPCWmWlUCJTnEpWJkyOGKTtdg68CsZBb8AmxURlB_dZhHeoZ519</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bandyopadhyay, Gautam ; Sajan, Mini P. ; Kanoh, Yoshinori ; Standaert, Mary L. ; Burke, Terrance R. ; Quon, Michael J. ; Reed, Brent C. ; Dikic, Ivan ; Noel, Laura E. ; Newgard, Christopher B. ; Farese, Robert</creator><creatorcontrib>Bandyopadhyay, Gautam ; Sajan, Mini P. ; Kanoh, Yoshinori ; Standaert, Mary L. ; Burke, Terrance R. ; Quon, Michael J. ; Reed, Brent C. ; Dikic, Ivan ; Noel, Laura E. ; Newgard, Christopher B. ; Farese, Robert</creatorcontrib><description>Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C but nevertheless cytochalasin B-inhibitable; (b) dependent upon proline-rich tyrosine kinase-2 (PYK2), GRB2, SOS, RAS, RAF, and MEK1; and (c) amplified by overexpression of the Glut1, but not Glut2, Glut3, or Glut4, glucose transporter. This amplifying effect was independent of glucose uptake but dependent on residues 463–468, IASGFR, in the Glut1 C terminus. Accordingly, glucose effects on ERK were amplified by expression of Glut4/Glut1 or Glut2/Glut1 chimeras containing IASGFR but not by Glut1/Glut4 or Glut1/Glut2 chimeras lacking these residues. Also, deletion of Glut1 residues 469–492 was without effect, but mutations involving serine 465 or arginine 468 yielded dominant-negative forms that inhibited glucose-dependent ERK activation. Glucose stimulated the phosphorylation of tyrosine residues 402 and 881 in PYK2 and binding of PYK2 to Myc-Glut1. Our findings suggest that: (a) glucose activates the GRB2/SOS/RAS/RAF/MEK1/ERK pathway by a mechanism that requires PYK2 and residues 463–468, IASGFR, in the Glut1 C terminus and (b) Glut1 serves as a sensor, transducer, and amplifier for glucose signaling to PYK2 and ERK.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M007920200</identifier><identifier>PMID: 11007796</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3T3 Cells ; Adipocytes - metabolism ; Animals ; Deoxyglucose - metabolism ; Disaccharides - pharmacology ; Focal Adhesion Kinase 2 ; Glucose - pharmacology ; Glucose Transporter Type 1 ; Glucose Transporter Type 2 ; Mice ; Mitogen-Activated Protein Kinases - metabolism ; Monosaccharide Transport Proteins - physiology ; Muscle, Smooth, Vascular - cytology ; Muscle, Smooth, Vascular - metabolism ; Protein-Tyrosine Kinases - physiology ; Rats</subject><ispartof>The Journal of biological chemistry, 2000-12, Vol.275 (52), p.40817-40826</ispartof><rights>2000 © 2000 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-5105a6086d1caa66ca3c90d8b9cbde4efd88d4b2ed3c548d6b74d78a5494a9f83</citedby><cites>FETCH-LOGICAL-c475t-5105a6086d1caa66ca3c90d8b9cbde4efd88d4b2ed3c548d6b74d78a5494a9f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11007796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bandyopadhyay, Gautam</creatorcontrib><creatorcontrib>Sajan, Mini P.</creatorcontrib><creatorcontrib>Kanoh, Yoshinori</creatorcontrib><creatorcontrib>Standaert, Mary L.</creatorcontrib><creatorcontrib>Burke, Terrance R.</creatorcontrib><creatorcontrib>Quon, Michael J.</creatorcontrib><creatorcontrib>Reed, Brent C.</creatorcontrib><creatorcontrib>Dikic, Ivan</creatorcontrib><creatorcontrib>Noel, Laura E.</creatorcontrib><creatorcontrib>Newgard, Christopher B.</creatorcontrib><creatorcontrib>Farese, Robert</creatorcontrib><title>Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C but nevertheless cytochalasin B-inhibitable; (b) dependent upon proline-rich tyrosine kinase-2 (PYK2), GRB2, SOS, RAS, RAF, and MEK1; and (c) amplified by overexpression of the Glut1, but not Glut2, Glut3, or Glut4, glucose transporter. This amplifying effect was independent of glucose uptake but dependent on residues 463–468, IASGFR, in the Glut1 C terminus. Accordingly, glucose effects on ERK were amplified by expression of Glut4/Glut1 or Glut2/Glut1 chimeras containing IASGFR but not by Glut1/Glut4 or Glut1/Glut2 chimeras lacking these residues. Also, deletion of Glut1 residues 469–492 was without effect, but mutations involving serine 465 or arginine 468 yielded dominant-negative forms that inhibited glucose-dependent ERK activation. Glucose stimulated the phosphorylation of tyrosine residues 402 and 881 in PYK2 and binding of PYK2 to Myc-Glut1. Our findings suggest that: (a) glucose activates the GRB2/SOS/RAS/RAF/MEK1/ERK pathway by a mechanism that requires PYK2 and residues 463–468, IASGFR, in the Glut1 C terminus and (b) Glut1 serves as a sensor, transducer, and amplifier for glucose signaling to PYK2 and ERK.</description><subject>3T3 Cells</subject><subject>Adipocytes - metabolism</subject><subject>Animals</subject><subject>Deoxyglucose - metabolism</subject><subject>Disaccharides - pharmacology</subject><subject>Focal Adhesion Kinase 2</subject><subject>Glucose - pharmacology</subject><subject>Glucose Transporter Type 1</subject><subject>Glucose Transporter Type 2</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Monosaccharide Transport Proteins - physiology</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Protein-Tyrosine Kinases - physiology</subject><subject>Rats</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFP2zAYhi00RDvguuPkww7j4GInduIcUQVsAsSkFYmb5dhfE1dpUtluB7-HP4qrdOKEL9ZnPY_1fi9C3xidMVryy1VtZg-UllVGM0qP0JRRmZNcsOcvaEppxkiVCTlBX0NY0XR4xU7QhLGklFUxRW-33dYMAfCViW6nIwT84OLQQE_04cXiP36I4Hp853qd0J_XL9FrA1237bTHf13T6454aNK4x0fsAsfWD9um3eud64F4Z1q8ePVDSNOBIhnWvU0o4JQkMvw_z8LrPmwGH8GfoeOl7gKcH-5T9HRzvZj_IvePt7_nV_fE8FJEIhgVuqCysMxoXRRG56aiVtaVqS1wWFopLa8zsLkRXNqiLrktpRa84rpayvwUzcZ_TYoYPCzVxru19q-KUbVvW6W21UfbSfg-CpttvQb7gR_qTcCPEWhd0_5zHlTtBtPCWmWlUCJTnEpWJkyOGKTtdg68CsZBb8AmxURlB_dZhHeoZ519</recordid><startdate>20001229</startdate><enddate>20001229</enddate><creator>Bandyopadhyay, Gautam</creator><creator>Sajan, Mini P.</creator><creator>Kanoh, Yoshinori</creator><creator>Standaert, Mary L.</creator><creator>Burke, Terrance R.</creator><creator>Quon, Michael J.</creator><creator>Reed, Brent C.</creator><creator>Dikic, Ivan</creator><creator>Noel, Laura E.</creator><creator>Newgard, Christopher B.</creator><creator>Farese, Robert</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001229</creationdate><title>Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter</title><author>Bandyopadhyay, Gautam ; Sajan, Mini P. ; Kanoh, Yoshinori ; Standaert, Mary L. ; Burke, Terrance R. ; Quon, Michael J. ; Reed, Brent C. ; Dikic, Ivan ; Noel, Laura E. ; Newgard, Christopher B. ; Farese, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-5105a6086d1caa66ca3c90d8b9cbde4efd88d4b2ed3c548d6b74d78a5494a9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>3T3 Cells</topic><topic>Adipocytes - metabolism</topic><topic>Animals</topic><topic>Deoxyglucose - metabolism</topic><topic>Disaccharides - pharmacology</topic><topic>Focal Adhesion Kinase 2</topic><topic>Glucose - pharmacology</topic><topic>Glucose Transporter Type 1</topic><topic>Glucose Transporter Type 2</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Monosaccharide Transport Proteins - physiology</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Protein-Tyrosine Kinases - physiology</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandyopadhyay, Gautam</creatorcontrib><creatorcontrib>Sajan, Mini P.</creatorcontrib><creatorcontrib>Kanoh, Yoshinori</creatorcontrib><creatorcontrib>Standaert, Mary L.</creatorcontrib><creatorcontrib>Burke, Terrance R.</creatorcontrib><creatorcontrib>Quon, Michael J.</creatorcontrib><creatorcontrib>Reed, Brent C.</creatorcontrib><creatorcontrib>Dikic, Ivan</creatorcontrib><creatorcontrib>Noel, Laura E.</creatorcontrib><creatorcontrib>Newgard, Christopher B.</creatorcontrib><creatorcontrib>Farese, Robert</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandyopadhyay, Gautam</au><au>Sajan, Mini P.</au><au>Kanoh, Yoshinori</au><au>Standaert, Mary L.</au><au>Burke, Terrance R.</au><au>Quon, Michael J.</au><au>Reed, Brent C.</au><au>Dikic, Ivan</au><au>Noel, Laura E.</au><au>Newgard, Christopher B.</au><au>Farese, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2000-12-29</date><risdate>2000</risdate><volume>275</volume><issue>52</issue><spage>40817</spage><epage>40826</epage><pages>40817-40826</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C but nevertheless cytochalasin B-inhibitable; (b) dependent upon proline-rich tyrosine kinase-2 (PYK2), GRB2, SOS, RAS, RAF, and MEK1; and (c) amplified by overexpression of the Glut1, but not Glut2, Glut3, or Glut4, glucose transporter. This amplifying effect was independent of glucose uptake but dependent on residues 463–468, IASGFR, in the Glut1 C terminus. Accordingly, glucose effects on ERK were amplified by expression of Glut4/Glut1 or Glut2/Glut1 chimeras containing IASGFR but not by Glut1/Glut4 or Glut1/Glut2 chimeras lacking these residues. Also, deletion of Glut1 residues 469–492 was without effect, but mutations involving serine 465 or arginine 468 yielded dominant-negative forms that inhibited glucose-dependent ERK activation. Glucose stimulated the phosphorylation of tyrosine residues 402 and 881 in PYK2 and binding of PYK2 to Myc-Glut1. Our findings suggest that: (a) glucose activates the GRB2/SOS/RAS/RAF/MEK1/ERK pathway by a mechanism that requires PYK2 and residues 463–468, IASGFR, in the Glut1 C terminus and (b) Glut1 serves as a sensor, transducer, and amplifier for glucose signaling to PYK2 and ERK.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11007796</pmid><doi>10.1074/jbc.M007920200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2000-12, Vol.275 (52), p.40817-40826 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_crossref_primary_10_1074_jbc_M007920200 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | 3T3 Cells Adipocytes - metabolism Animals Deoxyglucose - metabolism Disaccharides - pharmacology Focal Adhesion Kinase 2 Glucose - pharmacology Glucose Transporter Type 1 Glucose Transporter Type 2 Mice Mitogen-Activated Protein Kinases - metabolism Monosaccharide Transport Proteins - physiology Muscle, Smooth, Vascular - cytology Muscle, Smooth, Vascular - metabolism Protein-Tyrosine Kinases - physiology Rats |
title | Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose%20Activates%20Mitogen-activated%20Protein%20Kinase%20(Extracellular%20Signal-regulated%20Kinase)%20through%20Proline-rich%20Tyrosine%20Kinase-2%20and%20the%20Glut1%20Glucose%20Transporter&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bandyopadhyay,%20Gautam&rft.date=2000-12-29&rft.volume=275&rft.issue=52&rft.spage=40817&rft.epage=40826&rft.pages=40817-40826&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M007920200&rft_dat=%3Celsevier_cross%3ES0021925819556058%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/11007796&rft_els_id=S0021925819556058&rfr_iscdi=true |