Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter

Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-12, Vol.275 (52), p.40817-40826
Hauptverfasser: Bandyopadhyay, Gautam, Sajan, Mini P., Kanoh, Yoshinori, Standaert, Mary L., Burke, Terrance R., Quon, Michael J., Reed, Brent C., Dikic, Ivan, Noel, Laura E., Newgard, Christopher B., Farese, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C but nevertheless cytochalasin B-inhibitable; (b) dependent upon proline-rich tyrosine kinase-2 (PYK2), GRB2, SOS, RAS, RAF, and MEK1; and (c) amplified by overexpression of the Glut1, but not Glut2, Glut3, or Glut4, glucose transporter. This amplifying effect was independent of glucose uptake but dependent on residues 463–468, IASGFR, in the Glut1 C terminus. Accordingly, glucose effects on ERK were amplified by expression of Glut4/Glut1 or Glut2/Glut1 chimeras containing IASGFR but not by Glut1/Glut4 or Glut1/Glut2 chimeras lacking these residues. Also, deletion of Glut1 residues 469–492 was without effect, but mutations involving serine 465 or arginine 468 yielded dominant-negative forms that inhibited glucose-dependent ERK activation. Glucose stimulated the phosphorylation of tyrosine residues 402 and 881 in PYK2 and binding of PYK2 to Myc-Glut1. Our findings suggest that: (a) glucose activates the GRB2/SOS/RAS/RAF/MEK1/ERK pathway by a mechanism that requires PYK2 and residues 463–468, IASGFR, in the Glut1 C terminus and (b) Glut1 serves as a sensor, transducer, and amplifier for glucose signaling to PYK2 and ERK.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M007920200