The Low M r Protein-tyrosine Phosphatase Is Involved in Rho-mediated Cytoskeleton Rearrangement after Integrin and Platelet-derived Growth Factor Stimulation

The low molecular weight protein-tyrosine phosphatase (LMW-PTP) is an enzyme that is involved in the early events of platelet-derived growth factor (PDGF) receptor signal transduction. In fact, LMW-PTP is able to specifically bind and dephosphorylate activated PDGF receptor, thus modulating PDGF-ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-02, Vol.275 (7), p.4640-4646
Hauptverfasser: Chiarugi, Paola, Cirri, Paolo, Taddei, Letizia, Giannoni, Elisa, Camici, Guido, Manao, Giampaolo, Raugei, Giovanni, Ramponi, Giampietro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The low molecular weight protein-tyrosine phosphatase (LMW-PTP) is an enzyme that is involved in the early events of platelet-derived growth factor (PDGF) receptor signal transduction. In fact, LMW-PTP is able to specifically bind and dephosphorylate activated PDGF receptor, thus modulating PDGF-induced mitogenesis. In particular, LMW-PTP is involved in pathways that regulate the transcription of the immediately early genes myc and fos in response to growth factor stimulation. Recently, we have found that LMW-PTP exists constitutively in cytosolic and cytoskeleton-associated localization and that, after PDGF stimulation, c-Src is able to bind and phosphorylate LMW-PTP only in the cytoskeleton-associated fraction. As a consequence of its phosphorylation, LMW-PTP increases its catalytic activity about 20-fold. In this study, our interest was to investigate the role of LMW-PTP phosphorylation in cellular response to PDGF stimulation. To address this issue, we have transfected in NIH-3T3 cells a mutant form of LMW-PTP in which the c-Src phosphorylation sites (Tyr 131 and Tyr 132 ) were mutated to alanine. We have established that LMW-PTP phosphorylation by c-Src after PDGF treatment strongly influences both cell adhesion and migration. In addition, we have discovered a new LMW-PTP substrate localized in the cytoskeleton that becomes tyrosine-phosphorylated after PDGF treatment: p190Rho-GAP. Hence, LMW-PTP plays multiple roles in PDGF receptor-mediated mitogenesis, since it can bind and dephosphorylate PDGF receptor, and, at the same time, the cytoskeleton-associated LMW-PTP, through the regulation of the p190Rho-GAP phosphorylation state, controls the cytoskeleton rearrangement in response to PDGF stimulation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.275.7.4640