Peroxynitrite Inactivates Tryptophan Hydroxylase via Sulfhydryl Oxidation

Tryptophan hydroxylase, the initial and rate-limiting enzyme in serotonin biosynthesis, is inactivated by peroxynitrite in a concentration-dependent manner. This effect is prevented by molecules that react directly with peroxynitrite such as dithiothreitol, cysteine, glutathione, methionine, tryptop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1999-10, Vol.274 (42), p.29726-29732
Hauptverfasser: Kuhn, Donald M., Geddes, Timothy J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tryptophan hydroxylase, the initial and rate-limiting enzyme in serotonin biosynthesis, is inactivated by peroxynitrite in a concentration-dependent manner. This effect is prevented by molecules that react directly with peroxynitrite such as dithiothreitol, cysteine, glutathione, methionine, tryptophan, and uric acid but not by scavengers of superoxide (superoxide dismutase), hydroxyl radical (Me2SO, mannitol), and hydrogen peroxide (catalase). Assuming simple competition kinetics between peroxynitrite scavengers and the enzyme, a second-order rate constant of 3.4 × 104m−1s−1 at 25 °C and pH 7.4 was estimated. The peroxynitrite-induced loss of enzyme activity was accompanied by a concentration-dependent oxidation of protein sulfhydryl groups. Peroxynitrite-modified tryptophan hydroxylase was resistant to reduction by arsenite, borohydride, and dithiothreitol, suggesting that sulfhydryls were oxidized beyond sulfenic acid. Peroxynitrite also caused the nitration of tyrosyl residues in tryptophan hydroxylase, with a maximal modification of 3.8 tyrosines/monomer. Sodium bicarbonate protected tryptophan hydroxylase from peroxynitrite-induced inactivation and lessened the extent of sulfhydryl oxidation while causing a 2-fold increase in tyrosine nitration. Tetranitromethane, which oxidizes sulfhydryls at pH 6 or 8, but which nitrates tyrosyl residues at pH 8 only, inhibited tryptophan hydroxylase equally at either pH. Acetylation of tyrosyl residues withN-acetylimidazole did not alter tryptophan hydroxylase activity. These data suggest that peroxynitrite inactivates tryptophan hydroxylase via sulfhydryl oxidation. Modification of tyrosyl residues by peroxynitrite plays a relatively minor role in the inhibition of tryptophan hydroxylase catalytic activity.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.274.42.29726