Effect of Tetrahydropyrimidine Derivatives on Protein-Nucleic Acids Interaction

2-Methyl-4-carboxy,5-hydroxy-3,4,5,6-tetrahydropyri- midine (THP(A) or hydroxyectoine) and 2-methyl,4-carboxy-3,4,5,6-tetrahydropyrimidine (THP(B) or ectoine) are now recognized as ubiquitous bacterial osmoprotectants. To evaluate the impact of tetrahydropyrimidine derivatives (THPs) on protein-DNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1999-03, Vol.274 (11), p.6920-6929
Hauptverfasser: Malin, Gennady, Iakobashvili, Robert, Lapidot, Aviva
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:2-Methyl-4-carboxy,5-hydroxy-3,4,5,6-tetrahydropyri- midine (THP(A) or hydroxyectoine) and 2-methyl,4-carboxy-3,4,5,6-tetrahydropyrimidine (THP(B) or ectoine) are now recognized as ubiquitous bacterial osmoprotectants. To evaluate the impact of tetrahydropyrimidine derivatives (THPs) on protein-DNA interaction and on restriction-modification systems, we have examined their effect on the cleavage of plasmid DNA by 10 type II restriction endonucleases. THP(A) completely arrested the cleavage of plasmid and bacteriophage λ DNA by EcoRI endonuclease at 0.4 mm and the oligonucleotide (d(CGCGAATTCGCG))2 at about 4.0 mm. THP(B) was 10-fold less effective than THP(A), whereas for betaine and proline, a notable inhibition was observed only at 100 mm. Similar effects of THP(A) were observed for all tested restriction endonucleases, except for SmaI and PvuII, which were inhibited only partially at 50 mm THP(A). No effect of THP(A) on the activity of DNase I, RNase A, and Taq DNA polymerase was noticed. Gel-shift assays showed that THP(A) inhibited the EcoRI-(d(CGCGAATTCGCG))2complex formation, whereas facilitated diffusion of EcoRI along the DNA was not affected. Methylation of the carboxy group significantly decreased the activity of THPs, suggesting that their zwitterionic character is essential for the inhibition effect. Possible mechanisms of inhibition, the role of THPs in the modulation of the protein-DNA interaction, and the in vivo relevance of the observed phenomena are discussed.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.274.11.6920