Neurabin-II/Spinophilin

In a preceding paper, we reported a novel actin filament (F-actin)-binding protein, named neurabin, which was specifically expressed in neural tissue and implicated in neurite formation. We purified from rat brain another F-actin-binding protein, which had a domain organization similar to that of ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-02, Vol.273 (6), p.3470-3475
Hauptverfasser: Satoh, Ayako, Nakanishi, Hiroyuki, Obaishi, Hiroshi, Wada, Manabu, Takahashi, Kenichi, Satoh, Keiko, Hirao, Kazuyo, Nishioka, Hideo, Hata, Yutaka, Mizoguchi, Akira, Takai, Yoshimi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a preceding paper, we reported a novel actin filament (F-actin)-binding protein, named neurabin, which was specifically expressed in neural tissue and implicated in neurite formation. We purified from rat brain another F-actin-binding protein, which had a domain organization similar to that of neurabin but was ubiquitously expressed, and named it neurabin-II. The original neurabin, renamed neurabin-I, had 1095 amino acids and a calculated M r of 122,729, whereas neurabin-II had 817 amino acids and a calculated M r of 89,642. Both neurabin-I and -II had one F-actin-binding domain at the N-terminal region, one PDZ domain at the middle region, a domain known to interact with transmembrane proteins, and domains predicted to form coiled-coil structures at the C-terminal region. Both neurabin-I and -II bound along the sides of F-actin and showed F-actin-cross-linking activity. The subcellular distribution analysis indicated that neurabin-II was enriched at the postsynaptic density fraction in rat brain and the adherens junction fraction in rat liver. Immunofluorescence microscopic analysis revealed that neurabin-II was highly concentrated at the synapse in primary cultured rat hippocampal neurons and at the cadherin-based cell-cell adhesion sites in Madin-Darby canine kidney cells. Neurabin-II turned out to be the same as a recently reported protein phosphatase 1-binding protein named spinophilin. These results suggest that neurabin-II/spinophilin plays an important role in linking the actin cytoskeleton to the plasma membrane.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.6.3470