Chicken Ovalbumin Upstream Promoter-Transcription Factor (COUP-TF) Modulates Expression of the Purkinje Cell Protein-2 Gene

The cerebellar Purkinje cell-specific PCP-2 gene is transcriptionally activated by thyroid hormone during the 2nd and 3rd weeks of postnatal life in the rat. In contrast, thyroid hormone has no detectable effects on PCP-2 expression in the fetal rat. We now present data that suggest that the orphan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-06, Vol.273 (26), p.16391-16399
Hauptverfasser: Anderson, Grant W., Larson, Ruby J., Oas, Daniel R., Sandhofer, Charles R., Schwartz, Harold L., Mariash, Cary N., Oppenheimer, Jack H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cerebellar Purkinje cell-specific PCP-2 gene is transcriptionally activated by thyroid hormone during the 2nd and 3rd weeks of postnatal life in the rat. In contrast, thyroid hormone has no detectable effects on PCP-2 expression in the fetal rat. We now present data that suggest that the orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor (COUP-TF) represses triiodothyronine (T3)-dependent transcriptional activation of PCP-2 in the immature Purkinje cell. Gel shift assays show that the PCP-2 A1TRE and adjoining sequences (−295/−199 region) bind to rat and mouse brain nucleoproteins in a developmentally regulated fashion and that one of these nucleoproteins could be the orphan nucleoprotein COUP-TF. In support of this hypothesis, in vitro translated COUP-TF binds to the −295/−199 region and COUP-TF represses T3-dependent activation of the PCP-2 promoter in transient transfection analyses. Finally, immunohistochemical studies reveal that COUP-TF is specifically expressed in the immature fetal and early neonatal Purkinje cell and that this expression diminishes coincident with thyroid hormone induction of PCP-2 expression. Our findings are consistent with the hypothesis that the presence or absence of inhibitory proteins bound to the thyroid hormone response element of T3-responsive genes governs the responsivity of these genes to thyroid hormone during brain development.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.26.16391