Disulfide Bonds in the Extracellular Calcium-Polyvalent Cation-sensing Receptor Correlate with Dimer Formation and Its Response to Divalent Cations in Vitro
Extracellular calcium/polyvalent cation-sensing receptors (CaR) couple to G proteins and contain highly conserved extracellular cysteine residues. Immunoblotting of proteins from rat kidney inner medullary collecting duct endosomes with CaR-specific antibodies reveals alterations in the apparent mol...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1998-06, Vol.273 (23), p.14476-14483 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extracellular calcium/polyvalent cation-sensing receptors (CaR) couple to G proteins and contain highly conserved extracellular cysteine residues. Immunoblotting of proteins from rat kidney inner medullary collecting duct endosomes with CaR-specific antibodies reveals alterations in the apparent molecular mass of CaR depending on protein denaturation conditions. When denatured by SDS under nonreducing conditions, CaR migrates as a putative dimeric species of 240–310 kDa. This is twice the predicted molecular mass of the CaR monomer observed after SDS denaturation in the presence of sulfhydryl-reducing agents. In sucrose density gradients, Triton X-100-solubilized CaR sediments as a 220-kDa complex, not explainable by binding of G proteins to CaR monomers. Treatment of Triton-soluble CaR with divalent (Ca2+, Mg2+) and trivalent (Gd3+) metal ion CaR agonists, but not monovalent ions (Na+), partially shifts the electrophoretic mobility of CaR under reducing conditions from a predominantly monomeric to this putative dimeric species on immunoblots in a manner similar to their rank order of functional potency for CaR activation (Gd3+≫ Ca2+ > Mg2+). This Ca2+effect is blocked by pretreatment withN-ethylmaleimide. We conclude that disulfide bonds present in CaRs mediate formation of dimers that are preserved in Triton X-100 solution. In addition, CaR exposure to Ca2+induces formation of additional disulfide bonds within the Triton-soluble CaR complex. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.273.23.14476 |