The Chemorepulsive Activity of the Axonal Guidance Signal Semaphorin D Requires Dimerization

The axonal guidance signal semaphorin D is a member of a large family of proteins characterized by the presence of a highly conserved semaphorin domain of about 500 amino acids. The vertebrate semaphorins can be divided into four different classes that contain both secreted and membrane-bound protei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-03, Vol.273 (13), p.7326-7331
Hauptverfasser: Klostermann, A, Lohrum, M, Adams, R H, Püschel, A W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The axonal guidance signal semaphorin D is a member of a large family of proteins characterized by the presence of a highly conserved semaphorin domain of about 500 amino acids. The vertebrate semaphorins can be divided into four different classes that contain both secreted and membrane-bound proteins. Here we show that class III (SemD) and class IV semaphorins (SemB) form homodimers linked by intermolecular disulfide bridges. In addition to the 95-kDa form of SemD (SemD(95k)), proteolytic processing of SemD creates a 65-kDa isoform (SemD(65k)) that lacks the 33-kDa carboxyl-terminal domain. Although SemD(95k) formed dimers, the removal of the carboxyl-terminal domain resulted in the dissociation of SemD homodimers to monomeric SemD(65k). Mutation of cysteine 723, one of four conserved cysteine residues in the 33-kDa fragment, revealed its requirement both for the dimerization of SemD and its chemorepulsive activity. We suggest that dimerization is a general feature of sema- phorins which depends on class-specific sequences and is important for their function.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.13.7326