A Selective Inverse Agonist for Central Cannabinoid Receptor Inhibits Mitogen-activated Protein Kinase Activation Stimulated by Insulin or Insulin-like Growth Factor 1
In the present study, we showed that Chinese hamster ovary (CHO) cells transfected with human central cannabinoid receptor (CB1) exhibit high constitutive activity at both levels of mitogen-activated protein kinase (MAPK) and adenylyl cyclase. These activities could be blocked by the CB1-selective l...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1997-08, Vol.272 (35), p.22330-22339 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present study, we showed that Chinese hamster ovary (CHO) cells transfected with human central cannabinoid receptor (CB1) exhibit high constitutive activity at both levels of mitogen-activated protein kinase (MAPK) and adenylyl cyclase. These activities could be blocked by the CB1-selective ligand, SR 141716A, that functions as an inverse agonist. Moreover, binding studies showed that guanine nucleotides decreased the binding of the agonist CP-55,940, an effect usually observed with agonists, whereas it enhanced the binding of SR 141716A, a property of inverse agonists. Unexpectedly, we found that CB1-mediated effects of SR 141716A included inhibition of MAPK activation by pertussis toxin-sensitive receptor-tyrosine kinase such as insulin or insulin-like growth factor 1 receptors but not by pertussis toxin-insensitive receptor-tyrosine kinase such as the fibroblast growth factor receptor. We also observed similar results when cells were stimulated with Mas-7, a mastoparan analog, that directly activates the Gi protein. Furthermore, SR 141716A inhibited guanosine 5′-0-(thiotriphosphate) uptake induced by CP-55,940 or Mas-7 in CHO-CB1 cell membranes. This indicates that, in addition to the inhibition of autoactivated CB1, SR 141716A can deliver a biological signal that blocks the Gi protein and consequently abrogates most of the Gi-mediated responses. By contrast, SR 141716A had no effect on MAPK activation by insulin or IGF1 in CHO cells lacking CB1 receptors, ruling out the possibility of a direct interaction of SR 141716A with the Gi protein. This supports the notion that the Gi protein may act as a negative intracellular signaling cross-talk molecule. From these original results, which considerably enlarge the biological properties of the inverse agonist, we propose a novel model for receptor/ligand interactions. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.272.35.22330 |