Competition of Hydrophobic Peptides, Cytotoxic Drugs, and Chemosensitizers on a Common P-glycoprotein Pharmacophore as Revealed by Its ATPase Activity (∗)

The aim of the present study was to demonstrate that the modulation of P-glycoprotein (Pgp) ATPase activity by peptides, drugs, and chemosensitizers takes place on a common drug pharmacophore. To this end, a highly emetine-resistant Chinese hamster ovary cell line was established, in which Pgp const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1996-02, Vol.271 (6), p.3163-3171
Hauptverfasser: Borgnia, Mario J., Eytan, Gera D., Assaraf, Yehuda G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of the present study was to demonstrate that the modulation of P-glycoprotein (Pgp) ATPase activity by peptides, drugs, and chemosensitizers takes place on a common drug pharmacophore. To this end, a highly emetine-resistant Chinese hamster ovary cell line was established, in which Pgp constituted 18% of plasma membrane protein. Reconstituted proteoliposomes, the Pgp content of which was up to 40%, displayed a basal activity of 2.6 ± 0.45 μmol of Pi/min/mg of protein, suggesting the presence of an endogenous Pgp substrate. This basal ATPase activity was stimulated (up to 5.2 μmol of Pi/min/mg of protein) by valinomycin and various Pgp substrates, whereas, to our surprise, gramicidin D, an established Pgp substrate, was inhibitory. Taking advantage of this novel inhibition of Pgp ATPase activity by gramicidin D, a drug competition assay was devised in which gramicidin D-inhibited Pgp ATPase was coincubated with increasing concentrations of various substrates that stimulate its ATPase activity. Gramicidin D inhibition of Pgp ATPase was reversed by Pgp substrates, including various cytotoxic agents and chemosensitizers. The inhibition of the basal ATPase activity and the reversal of gramicidin D inhibition of Pgp ATPase by its various substrates conformed to classical Michaelis-Menten competition. This competition involved an endogenous substrate, the inhibitory drug gramicidin D, and a stimulatory substrate. We conclude that the various MDR type substrates and chemosensitizers compete on a common drug binding site present in Pgp.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.6.3163