Expression in High Yield of Pig α1β1 Na,K-ATPase and Inactive Mutants D369N and D807N in Saccharomyces cerevisiae()

Studies of structure-function relationships in Na,K-ATPase require high yield expression of inactive mutations in cells without endogenous Na,K-ATPase activity. In this work we developed a host/vector system for expression of fully active pig Na,K-ATPase as well as the inactive mutations D369N and D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1996-02, Vol.271 (5), p.2514-2522
Hauptverfasser: Pedersen, Per Amstrup, Rasmussen, Jakob H., J⊘rgensen, Peter L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies of structure-function relationships in Na,K-ATPase require high yield expression of inactive mutations in cells without endogenous Na,K-ATPase activity. In this work we developed a host/vector system for expression of fully active pig Na,K-ATPase as well as the inactive mutations D369N and D807N at high levels in Saccharomyces cerevisiae. The α1- and β1-subunit cDNAs were inserted into a single 2-μm-based plasmid with a high and regulatable copy number and strong galactose-inducible promoters allowing for stoichiometric alterations of gene dosage. The protease-deficient host strain was engineered to express high levels of GAL4 transactivating protein, thereby causing a 10-fold increase in expression to 32,500 ± 3,000 [3H]ouabain sites/cell. In one bioreactor run 150-200 g of yeast were produced with 54 ± 5 μg of Na,K-pump protein/g of cells. Through purification in membrane bound form the activity of the recombinant Na,K-ATPase was increased to 42-50 pmol/mg of protein. The Na,K dependence of ATP hydrolysis and the molar activity (4,500-7,000 min-1) were close to those of native pig kidney Na,K-ATPase. Mutations to the phosphorylation site (D369N) or presumptive cation sites (D807N), both devoid of Na,K-ATPase activity, were expressed in the yeast membrane at the same α-subunit concentration and [3H]ouabain binding capacity as the wild type Na,K-ATPase. The high yield and absence of endogenous activity allowed assay of [3H]ATP binding at equilibrium, demonstrating a remarkable 18-fold increase in affinity for ATP in consequence of reducing the negative charge at the phosphorylation site (D369N).
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.5.2514