Rearrangements of the Fibrin Network and Spatial Distribution of Fibrinolytic Components during Plasma Clot Lysis
Binding of components of the fibrinolytic system to fibrin is important for the regulation of fibrinolysis. In this study, decomposition of the fibrin network and binding of plasminogen and plasminogen activators (PAs) to fibrin during lysis of a plasma clot were investigated with confocal microscop...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1996-01, Vol.271 (4), p.2133-2138 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Binding of components of the fibrinolytic system to fibrin is important for the regulation of fibrinolysis. In this study,
decomposition of the fibrin network and binding of plasminogen and plasminogen activators (PAs) to fibrin during lysis of
a plasma clot were investigated with confocal microscopy using fluorescein-labeled preparations of fibrinogen, plasminogen,
tissue-type PA (t-PA), and two-chain urokinase-type PA (tcu-PA).
Lysis induced by PAs present throughout the plasma clot was accompanied by a gradual loss of fibrin content of fibers and
by accumulation of plasminogen onto the fibers. Two sequential phases could be distinguished: a phase of prelysis, during
which the fibrin network remained immobile, and a phase of final lysis, during which fibers moved with a tendency to shrink
and eventually disappeared.
The two phases occurred simultaneously but in different locations when lysis was induced by PAs present in the plasma surrounding
the clot. The zone of final lysis was located within a 5-8-μm superficial layer, where fibers were mobile, and surface-associated
fibrin agglomerates appeared. Plasminogen accumulated in these agglomerates up to 30-fold as compared with its concentration
in the outer plasma. t-PA was also highly concentrated in the agglomerates, and tcu-PA bound to them slightly. The zone of
prelysis, where plasminogen was moderately accumulated on the immobile fibers, was located deeper in the clot. This zone was
much thinner in the case of t-PA-induced lysis than in the case of tcu-PA-induced lysis, reflecting the difference in penetration
of the two PAs into the clot.
We conclude that under conditions of diffusional transport of fibrinolytic enzymes from outside a plasma clot, extensive lysis
is spatially restricted to a zone not exceeding 5-8 μm from the clot surface. In this zone the structure of the fibrin network
undergoes significant changes, and strikingly high accumulation of fibrinolytic components takes place. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.271.4.2133 |