Mutagenesis of Active Site Residues in Type I Dehydroquinase from Escherichia coli

Chemical modification experiments have previously implicated four amino acid residues in the mechanism of type I dehydroquinase from Escherichia coli. To further test their importance, these residues were mutated, and the resulting mutants were expressed, purified, and characterized. When the highly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1995-10, Vol.270 (43), p.25827-25836
Hauptverfasser: Leech, Andrew P., James, Richard, Coggins, John R., Kleanthous, Colin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical modification experiments have previously implicated four amino acid residues in the mechanism of type I dehydroquinase from Escherichia coli. To further test their importance, these residues were mutated, and the resulting mutants were expressed, purified, and characterized. When the highly conserved, Schiff base-forming lysine residue was mutated (K170A) the resulting enzyme showed a ˜106-fold reduction in catalytic activity, but was still able to bind both substrate and product, as shown by a novel fluorescence-based ligand-binding assay. This is consistent with Lys-170 playing a central role in catalysis and shows that, although forming a covalent bond with the substrate, it is not essential for ground state binding of substrate or product. Conversely, substituting leucine for the conserved, iodoacetate-reactive methionine residue (M205L) had little effect on kcat or Km. Diethylpyrocarbonate experiments had previously implicated either His-143 or His-146 as the putative active site general base. Substituting alanine for each shows that H146A retains full catalytic activity while H143A shows a 106-fold loss of activity. As with the K170A mutant, H143A can bind ligand, and in addition to the predicted role of this residue as the proton-abstracting general base, our data suggest that it is also involved in the formation and breakdown of Schiff base intermediates. Isoelectric focusing, electrospray ionization mass spectrometry, and fluorescence spectroscopy show that the H143A mutant preferentially stabilizes the formation of the product Schiff base, and that this results in burst kinetics reminiscent of p-nitrophenyl acetate hydrolysis by chymotrypsin. The most striking illustration of this stabilization is the fact that the H143A mutant is isolated from overexpressing cells with a significant proportion of the enzyme monomers covalently bound to the product, 3-dehydroshikimate, via a Schiff base linkage. Our data suggest that the H143A mutant is able to slowly transform substrate to product but that the hydrolytic release of the product is stalled. The proposed dual role of His-143 in the mechanism of type I dehydroquinase may explain why the elimination reaction catalyzed by this enzyme proceeds with syn stereochemistry.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.43.25827