Mutation or Increased Copy Number of nodE Has No Effect on the Spectrum of Chitolipooligosaccharide Nod Factors Made By Rhizobiumleguminosarum bv. trifolii(∗)

The bacterial gene nodE is the key determinant of host specificity in the Rhizobium leguminosarum-legume symbiosis and has been proposed to determine unique polyunsaturated fatty acyl moieties in chitolipooligosaccharides (CLOS) made by the bacterial symbiont. We evaluated nodE function by examining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1995-09, Vol.270 (36), p.20968-20977
Hauptverfasser: Philip-Hollingsworth, Saleela, Orgambide, Guy G., Bradford, James J., Smith, Damon K., Hollingsworth, Rawle I., Dazzo, Frank B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bacterial gene nodE is the key determinant of host specificity in the Rhizobium leguminosarum-legume symbiosis and has been proposed to determine unique polyunsaturated fatty acyl moieties in chitolipooligosaccharides (CLOS) made by the bacterial symbiont. We evaluated nodE function by examining CLOS structures made by wild-type R. leguminosarum bv. trifolii ANU843, an isogenic nodE::Tn5 mutant, and a recombinant strain containing multiple copies of the pSym nod region of ANU843. 1H-NMR, electrospray ionization mass spectrometry, fast atom bombardment mass spectrometry, flame ionization detection-gas chromatography, gas chromatography/mass spectrometry, and high performance liquid chromatography/UV photodiode array analyses revealed that these bacterial strains made the same spectrum of CLOS species. We also found that ions in the mass spectra which were originally assigned to nodE-dependent CLOS species containing unique polyunsaturated fatty acids (Spaink, H. P., Bloemberg, G. V., van Brussel, A. A. N., Lugtenberg, B. J. J., van der Drift, K. M. G. M., Haverkamp, J., and Thomas-Oates, J. E.(1995) Mol. Plant-Microbe Interact. 8, 155-164) were actually due to sodium adducts of the major nodE-independent CLOS species. No evidence for nodE-dependent CLOSs was found for these strains. These results indicate a need to revise the current model to explain how nodE determines host range in the R. leguminosarum- legume symbiosis.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.36.20968