Self-peroxidation of Metmyoglobin Results in Formation of an Oxygen-reactive Tryptophan-centered Radical (∗)
In the reaction between hydrogen peroxide and metmyoglobin, the heme iron is oxidized to its ferryl-oxo form and the globin to protein radicals, at least one of which reacts with dioxygen to form a peroxyl radical. To identify the residue(s) that forms the oxygen-reactive radical, we utilized electr...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1995-07, Vol.270 (27), p.16075-16081 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the reaction between hydrogen peroxide and metmyoglobin, the heme iron is oxidized to its ferryl-oxo form and the globin to protein radicals, at least one of which reacts with dioxygen to form a peroxyl radical. To identify the residue(s) that forms the oxygen-reactive radical, we utilized electron spin resonance (ESR) spectroscopy and the spin traps 2-methyl-2-nitrosopropane and 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS). Metmyoglobin radical adducts had spectra typical of immobilized nitroxides that provided little structural information, but subsequent nonspecific protease treatment resulted in the detection of isotropic three-line spectra, indicative of a radical adduct centered on a tertiary carbon with no bonds to nitrogen or hydrogen. Similar isotropic three-line ESR spectra were obtained by spin trapping the oxidation product of tryptophan reacting with catalytic metmyoglobin and hydrogen peroxide. High resolution ESR spectra of DBNBS/trp and of the protease-treated DBNBS/metMb were simulated using superhyperfine coupling to a nitrogen and three non-equivalent hydrogens, consistent with a radical adduct formed at C-3 of the indole ring. Oxidation of tryptophan by catalytic metMb and hydrogen peroxide resulted in spin trap-inhibitable oxygen consumption, consistent with formation of a peroxyl radical. The above results support self-peroxidation of a tryptophan residue in the reaction between metMb and hydrogen peroxide. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.270.27.16075 |