The Opitz Syndrome Gene Product, MID1, Associates with Microtubules

Opitz syndrome (OS) is a genetically heterogeneous disorder characterized by defects of the ventral midline, including hypertelorism, cleft lip and palate, heart defects, and mental retardation. We recently identified the gene responsible for X-linked OS. The ubiquitously expressed gene product, MID...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1999-03, Vol.96 (6), p.2794-2799
Hauptverfasser: Schweiger, Susann, Foerster, John, Lehmann, Tanja, Suckow, Vanessa, Muller, Yves A., Walter, Gerald, Davies, Theresa, Porter, Helen, van Bokhoven, Hans, Lunt, Peter W., Traub, Peter, Ropers, Hans-Hilger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Opitz syndrome (OS) is a genetically heterogeneous disorder characterized by defects of the ventral midline, including hypertelorism, cleft lip and palate, heart defects, and mental retardation. We recently identified the gene responsible for X-linked OS. The ubiquitously expressed gene product, MID1, is a member of the RING finger family. These proteins are characterized by an N-terminal tripartite protein-protein interaction domain and a conserved C terminus of unknown function. Unlike other RING finger proteins for which diverse cellular functions have been proposed, the function of MID1 is as yet undefined. By using the green fluorescent protein as a tag, we show here that MID1 is a microtubule-associated protein that influences microtubule dynamics in MID1-overexpressing cells. We confirm this observation by demonstrating a colocalization of MID1 and tubulin in subcellular fractions and the association of endogenous MID1 with microtubules after in vitro assembly. Furthermore, overexpressed MID1 proteins harboring mutations described in OS patients lack the capability to associate with microtubules, forming cytoplasmic clumps instead. These data give an idea of the possible molecular pathomechanism underlying the OS phenotype.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.96.6.2794