O 2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase

The rapid response to hypoxia in the pulmonary artery (PA), carotid body, and ductus arteriosus is partially mediated by O 2 -responsive K + channels. K + channels in PA smooth muscle cells (SMCs) are inhibited by hypoxia, causing membrane depolarization, increased cytosolic calcium, and hypoxic pul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1999-07, Vol.96 (14), p.7944-7949
Hauptverfasser: Archer, Stephen L., Reeve, Helen L., Michelakis, Evangelos, Puttagunta, Lakshmi, Waite, Ross, Nelson, Daniel P., Dinauer, Mary C., Weir, E. Kenneth
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid response to hypoxia in the pulmonary artery (PA), carotid body, and ductus arteriosus is partially mediated by O 2 -responsive K + channels. K + channels in PA smooth muscle cells (SMCs) are inhibited by hypoxia, causing membrane depolarization, increased cytosolic calcium, and hypoxic pulmonary vasoconstriction. We hypothesize that the K + channels are not themselves “O 2 sensors” but rather respond to the reduced redox state created by hypoxic inhibition of candidate O 2 sensors (NADPH oxidase or the mitochondrial electron transport chain). Both pathways shuttle electrons from donors, down a redox gradient, to O 2 . Hypoxia inhibits these pathways, decreasing radical production and causing cytosolic accumulation of unused, reduced, freely diffusible electron donors. PASMC K + channels are redox responsive, opening when oxidized and closing when reduced. Inhibitors of NADPH oxidase (diphenyleneiodonium) and mitochondrial complex 1 (rotenone) both inhibit PASMC whole-cell K + current but lack the specificity to identify the O 2 -sensor pathway. We used mice lacking the gp91 subunit of NADPH oxidase [chronic granulomatous disease (CGD) mice] to assess the hypothesis that NADPH oxidase is a PA O 2 -sensor. In wild-type lungs, gp91 phox and p22 phox subunits are present (relative expression: macrophages > airways and veins > PASMCs). Deletion of gp91 phox did not alter p22 phox expression but severely inhibited activated O 2 species production. Nonetheless, hypoxia caused identical inhibition of whole-cell K + current (in PASMCs) and hypoxic pulmonary vasoconstriction (in isolated lungs) from CGD vs. wild-type mice. Rotenone vasoconstriction was preserved in CGD mice, consistent with a role for the mitochondrial electron transport chain in O 2 sensing. NADPH oxidase, though a major source of lung radical production, is not the pulmonary vascular O 2 sensor in mice.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.96.14.7944