Five-Transmembrane Domains Appear Sufficient for a G Protein-Coupled Receptor: Functional Five-Transmembrane Domain Chemokine Receptors

The putative seven-transmembrane (TM) domains have been the structural hallmark for the superfamily of heterotrimeric G protein-coupled receptors (GPCRs) that regulate a variety of cellular functions by mediating a large number of extracellular signals. Five-TM GPCR mutants of chemokine receptor CCR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1999-07, Vol.96 (14), p.7922-7927
Hauptverfasser: Ling, Kun, Wang, Ping, Zhao, Jian, Wu, Ya-Lan, Cheng, Zhi-Jie, Wu, Guo-Xiang, Hu, Wei, Ma, Lan, Pei, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The putative seven-transmembrane (TM) domains have been the structural hallmark for the superfamily of heterotrimeric G protein-coupled receptors (GPCRs) that regulate a variety of cellular functions by mediating a large number of extracellular signals. Five-TM GPCR mutants of chemokine receptor CCR5 and CXCR4, the N-terminal segment of which connected directly to TM3 as a result of a deletion of TM1-2 and the first intracellular and extracellular loops, have been obtained in this study. Laser confocal microscopy and flow cytometry analysis revealed that these five-TM mutant GPCRs were expressed stably on the cell surface after transfection into human embryonic kidney 293 cells. The five-TM CCR5 and CXCR4 functioned as normal chemokine receptors in mediating chemokine-stimulated chemotaxis, Ca2+ influx, and activation of pertussis toxin-sensitive G proteins. Like the wild-type GPCRs, the five-TM mutant receptors also underwent agonist-dependent internalization and desensitization and were subjected to regulation by GPCR kinases and arrestins. Our study indicates that five-TM domains, at least in the case of CCR5 and CXCR4, appear to meet the minimum structural requirements for a functional GPCR and suggests possible existence of functional five-TM GPCRs in nature during evolution.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.96.14.7922