Peptoids: A Modular Approach to Drug Discovery

Peptoids, oligomers of N-substituted glycines, are described as a motif for the generation of chemically diverse libraries of novel molecules. Ramachandran-type plots were calculated and indicate a greater diversity of conformational states available for peptoids than for peptides. The monomers inco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1992-10, Vol.89 (20), p.9367-9371
Hauptverfasser: Simon, Reyna J., Kania, Robert S., Zuckermann, Ronald N., Huebner, Verena D., Jewell, David A., Banville, Steven, Ng, Simon, Wang, Liang, Rosenberg, Steven, Marlowe, Charles K., Spellmeyer, David C., Tan, Ruoying, Frankel, Alan D., Santi, Daniel V., Cohen, Fred E., Bartlett, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Peptoids, oligomers of N-substituted glycines, are described as a motif for the generation of chemically diverse libraries of novel molecules. Ramachandran-type plots were calculated and indicate a greater diversity of conformational states available for peptoids than for peptides. The monomers incorporate t-butyl-based side-chain and 9-fluorenylmethoxycarbonyl α-amine protection. The controlled oligomerization of the peptoid monomers was performed manually and robotically with in situ activation by either benzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophosphate or bromotris(pyrrolidino)phosphonium hexafluorophosphate. Other steps were identical to peptide synthesis using α-(9-fluorenylmethoxycarbonyl)amino acids. A total of 15 monomers and 10 oligomers (peptoids) are described. Preliminary data are presented on the stability of a representative oligopeptoid to enzymatic hydrolysis. Peptoid versions of peptide ligands of three biological systems (bovine pancreatic α-amylase, hepatitis A virus 3C proteinase, and human immunodeficiency virus transactivator-responsive element RNA) were found with affinities comparable to those of the corresponding peptides. The potential use of libraries of these compounds in receptor- or enzyme-based assays is discussed.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.89.20.9367