A More Biologically Plausible Learning Rule for Neural Networks
Many recent studies have used artificial neural network algorithms to model how the brain might process information. However, back-propagation learning, the method that is generally used to train these networks, is distinctly "unbiological." We describe here a more biologically plausible l...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1991-05, Vol.88 (10), p.4433-4437 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many recent studies have used artificial neural network algorithms to model how the brain might process information. However, back-propagation learning, the method that is generally used to train these networks, is distinctly "unbiological." We describe here a more biologically plausible learning rule, using reinforcement learning, which we have applied to the problem of how area 7a in the posterior parietal cortex of monkeys might represent visual space in head-centered coordinates. The network behaves similarly to networks trained by using back-propagation and to neurons recorded in area 7a. These results show that a neural network does not require back propagation to acquire biologically interesting properties. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.88.10.4433 |