Quantifying Genetic and Nongenetic Contributions to Malarial Infection in a Sri Lankan Population
Explaining the causes of variation in the severity of malarial disease remains a major challenge in the treatment and control of malaria. Many factors are known to contribute to this variation, including parasite genetics, host genetics, acquired immunity, and exposure levels. However, the relative...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2000-11, Vol.97 (23), p.12661-12666 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Explaining the causes of variation in the severity of malarial disease remains a major challenge in the treatment and control of malaria. Many factors are known to contribute to this variation, including parasite genetics, host genetics, acquired immunity, and exposure levels. However, the relative importance of each of these to the overall burden of malarial disease in human populations has not been assessed. Here, we have partitioned variation in the incidence of malarial infection and the clinical intensity of malarial disease in a rural population in Sri Lanka into its component causes by pedigree analysis of longitudinal data. We found that human genetics, housing, and predisposing systematic effects (e.g., sex, age, occupation, history of infections, village) each explained approximately 15% of the variation in the frequency of malarial infection. For clinical intensity of illness, 20% of the variation was explained by repeatable differences between patients, about half of which was attributable to host genetics. The other half was attributable to semipermanent differences among patients, most of which could be explained by known predisposing factors. Three percent of variation in clinical intensity was explained by housing, and an additional 7% was explained by current influences relating to infection status (e.g., parasitemia, parasite species). Genetic control of Plasmodium falciparum infections appeared to modulate the frequency and intensity of infections, whereas genetic control of Plasmodium vivax infections appeared to confer absolute susceptibility or refractoriness but not intensity of disease. Overall, the data show consistent, repeatable differences among hosts in their susceptibility to clinical disease, about half of which are attributable to host genes. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.220267997 |