IP 3 R-driven increases in mitochondrial Ca 2+ promote neuronal death in NPC disease

Ca is the most ubiquitous second messenger in neurons whose spatial and temporal elevations are tightly controlled to initiate and orchestrate diverse intracellular signaling cascades. Numerous neuropathologies result from mutations or alterations in Ca handling proteins; thus, elucidating molecular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-10, Vol.118 (40)
Hauptverfasser: Tiscione, Scott A, Casas, Maria, Horvath, Jonathan D, Lam, Vincent, Hino, Keiko, Ory, Daniel S, Santana, L Fernando, Simó, Sergi, Dixon, Rose E, Dickson, Eamonn J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ca is the most ubiquitous second messenger in neurons whose spatial and temporal elevations are tightly controlled to initiate and orchestrate diverse intracellular signaling cascades. Numerous neuropathologies result from mutations or alterations in Ca handling proteins; thus, elucidating molecular pathways that shape Ca signaling is imperative. Here, we report that loss-of-function, knockout, or neurodegenerative disease-causing mutations in the lysosomal cholesterol transporter, Niemann-Pick Type C1 (NPC1), initiate a damaging signaling cascade that alters the expression and nanoscale distribution of IP R type 1 (IP R1) in endoplasmic reticulum membranes. These alterations detrimentally increase G -protein coupled receptor-stimulated Ca release and spontaneous IP R1 Ca activity, leading to mitochondrial Ca cytotoxicity. Mechanistically, we find that SREBP-dependent increases in Presenilin 1 (PS1) underlie functional and expressional changes in IP R1. Accordingly, expression of PS1 mutants recapitulate, while PS1 knockout abrogates Ca phenotypes. These data present a signaling axis that links the NPC1 lysosomal cholesterol transporter to the damaging redistribution and activity of IP R1 that precipitates cell death in NPC1 disease and suggests that NPC1 is a nanostructural disease.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2110629118