Reversible structure manipulation by tuning carrier concentration in metastable Cu 2 S

The optimal functionalities of materials often appear at phase transitions involving simultaneous changes in the electronic structure and the symmetry of the underlying lattice. It is experimentally challenging to disentangle which of the two effects--electronic or structural--is the driving force f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-09, Vol.114 (37), p.9832-9837
Hauptverfasser: Tao, Jing, Chen, Jingyi, Li, Jun, Mathurin, Leanne, Zheng, Jin-Cheng, Li, Yan, Lu, Deyu, Cao, Yue, Wu, Lijun, Cava, Robert Joseph, Zhu, Yimei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The optimal functionalities of materials often appear at phase transitions involving simultaneous changes in the electronic structure and the symmetry of the underlying lattice. It is experimentally challenging to disentangle which of the two effects--electronic or structural--is the driving force for the phase transition and to use the mechanism to control material properties. Here we report the concurrent pumping and probing of Cu S nanoplates using an electron beam to directly manipulate the transition between two phases with distinctly different crystal symmetries and charge-carrier concentrations, and show that the transition is the result of charge generation for one phase and charge depletion for the other. We demonstrate that this manipulation is fully reversible and nonthermal in nature. Our observations reveal a phase-transition pathway in materials, where electron-induced changes in the electronic structure can lead to a macroscopic reconstruction of the crystal structure.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1709163114