Highly permeable artificial water channels that can self-assemble into two-dimensional arrays

Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-08, Vol.112 (32), p.9810-9815
Hauptverfasser: Shen, Yue-xiao, Si, Wen, Erbakan, Mustafa, Decker, Karl, De Zorzi, Rita, Saboe, Patrick O., Kang, You Jung, Majd, Sheereen, Butler, Peter J., Walz, Thomas, Aksimentiev, Aleksei, Hou, Jun-li, Kumar, Manish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9815
container_issue 32
container_start_page 9810
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Shen, Yue-xiao
Si, Wen
Erbakan, Mustafa
Decker, Karl
De Zorzi, Rita
Saboe, Patrick O.
Kang, You Jung
Majd, Sheereen
Butler, Peter J.
Walz, Thomas
Aksimentiev, Aleksei
Hou, Jun-li
Kumar, Manish
description Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(±0.3) × 10−14cm³/s or 3.5(±1.0) × 10⁸ water molecules per s, which is in the range of AQPs (3.4∼40.3 × 10⁸ water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 10⁸ water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼10⁷ water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼2.6 × 10⁵ pores per μm²) is two orders of magnitude higher than that of CNT membranes (0.1∼2.5 × 10³ pores per μm²). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays.
doi_str_mv 10.1073/pnas.1508575112
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1508575112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26464780</jstor_id><sourcerecordid>26464780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-ec24d1b21c2a6de498ed15be442a59697512ecf9b69f4d2712a6e27a9bfc277f3</originalsourceid><addsrcrecordid>eNpdkcFu1DAURS0EokNhzQqIxIZNWj_HseNNJVQBRarEBpbIcpyXjkeOPdgeqvl7EmYYCisv3rlHvrqEvAR6AVQ2l9tg8gW0tGtlC8AekRVQBbXgij4mK0qZrDvO-Bl5lvOGUqrajj4lZ0wwEErwFfl-4-7Wfl9tMU1oeo-VScWNzjrjq3tTMFV2bUJAn6uyNqWyJlQZ_VibnHFaAi6UWJX7WA9uwpBdDHPUpGT2-Tl5Mhqf8cXxPSffPn74en1T33759Pn6_W1tuZClRsv4AD0Dy4wYkKsOB2h75JyZVgk1d2NoR9ULNfKBSZgxZNKofrRMyrE5J1cH73bXTzhYDCUZr7fJTSbtdTRO_3sJbq3v4k_N26YTnM2Cd0dBij92mIueXLbovQkYd1mDpI1kVIoFffsfuom7NHf-TXFgHABm6vJA2RRzTjiePgNUL9PpZTr9d7o58fphhxP_Z6sZeHMEluRJB0w3TKsO6Ey8OhCbXGJ6YOCCy442vwClVaqW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1704124111</pqid></control><display><type>article</type><title>Highly permeable artificial water channels that can self-assemble into two-dimensional arrays</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Shen, Yue-xiao ; Si, Wen ; Erbakan, Mustafa ; Decker, Karl ; De Zorzi, Rita ; Saboe, Patrick O. ; Kang, You Jung ; Majd, Sheereen ; Butler, Peter J. ; Walz, Thomas ; Aksimentiev, Aleksei ; Hou, Jun-li ; Kumar, Manish</creator><creatorcontrib>Shen, Yue-xiao ; Si, Wen ; Erbakan, Mustafa ; Decker, Karl ; De Zorzi, Rita ; Saboe, Patrick O. ; Kang, You Jung ; Majd, Sheereen ; Butler, Peter J. ; Walz, Thomas ; Aksimentiev, Aleksei ; Hou, Jun-li ; Kumar, Manish</creatorcontrib><description>Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(±0.3) × 10−14cm³/s or 3.5(±1.0) × 10⁸ water molecules per s, which is in the range of AQPs (3.4∼40.3 × 10⁸ water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 10⁸ water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼10⁷ water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼2.6 × 10⁵ pores per μm²) is two orders of magnitude higher than that of CNT membranes (0.1∼2.5 × 10³ pores per μm²). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1508575112</identifier><identifier>PMID: 26216964</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aquaporins ; Aquaporins - chemistry ; Biological Sciences ; Ion Channels - chemistry ; Ions ; Membrane separation ; Models, Molecular ; Molecular Dynamics Simulation ; Molecules ; Nanotubes, Carbon ; Peptides - chemistry ; Permeability ; Physical Sciences ; Unilamellar Liposomes - chemistry ; Water ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (32), p.9810-9815</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 11, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-ec24d1b21c2a6de498ed15be442a59697512ecf9b69f4d2712a6e27a9bfc277f3</citedby><cites>FETCH-LOGICAL-c467t-ec24d1b21c2a6de498ed15be442a59697512ecf9b69f4d2712a6e27a9bfc277f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/32.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26464780$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26464780$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26216964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Yue-xiao</creatorcontrib><creatorcontrib>Si, Wen</creatorcontrib><creatorcontrib>Erbakan, Mustafa</creatorcontrib><creatorcontrib>Decker, Karl</creatorcontrib><creatorcontrib>De Zorzi, Rita</creatorcontrib><creatorcontrib>Saboe, Patrick O.</creatorcontrib><creatorcontrib>Kang, You Jung</creatorcontrib><creatorcontrib>Majd, Sheereen</creatorcontrib><creatorcontrib>Butler, Peter J.</creatorcontrib><creatorcontrib>Walz, Thomas</creatorcontrib><creatorcontrib>Aksimentiev, Aleksei</creatorcontrib><creatorcontrib>Hou, Jun-li</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><title>Highly permeable artificial water channels that can self-assemble into two-dimensional arrays</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(±0.3) × 10−14cm³/s or 3.5(±1.0) × 10⁸ water molecules per s, which is in the range of AQPs (3.4∼40.3 × 10⁸ water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 10⁸ water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼10⁷ water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼2.6 × 10⁵ pores per μm²) is two orders of magnitude higher than that of CNT membranes (0.1∼2.5 × 10³ pores per μm²). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays.</description><subject>Aquaporins</subject><subject>Aquaporins - chemistry</subject><subject>Biological Sciences</subject><subject>Ion Channels - chemistry</subject><subject>Ions</subject><subject>Membrane separation</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecules</subject><subject>Nanotubes, Carbon</subject><subject>Peptides - chemistry</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Unilamellar Liposomes - chemistry</subject><subject>Water</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcFu1DAURS0EokNhzQqIxIZNWj_HseNNJVQBRarEBpbIcpyXjkeOPdgeqvl7EmYYCisv3rlHvrqEvAR6AVQ2l9tg8gW0tGtlC8AekRVQBbXgij4mK0qZrDvO-Bl5lvOGUqrajj4lZ0wwEErwFfl-4-7Wfl9tMU1oeo-VScWNzjrjq3tTMFV2bUJAn6uyNqWyJlQZ_VibnHFaAi6UWJX7WA9uwpBdDHPUpGT2-Tl5Mhqf8cXxPSffPn74en1T33759Pn6_W1tuZClRsv4AD0Dy4wYkKsOB2h75JyZVgk1d2NoR9ULNfKBSZgxZNKofrRMyrE5J1cH73bXTzhYDCUZr7fJTSbtdTRO_3sJbq3v4k_N26YTnM2Cd0dBij92mIueXLbovQkYd1mDpI1kVIoFffsfuom7NHf-TXFgHABm6vJA2RRzTjiePgNUL9PpZTr9d7o58fphhxP_Z6sZeHMEluRJB0w3TKsO6Ey8OhCbXGJ6YOCCy442vwClVaqW</recordid><startdate>20150811</startdate><enddate>20150811</enddate><creator>Shen, Yue-xiao</creator><creator>Si, Wen</creator><creator>Erbakan, Mustafa</creator><creator>Decker, Karl</creator><creator>De Zorzi, Rita</creator><creator>Saboe, Patrick O.</creator><creator>Kang, You Jung</creator><creator>Majd, Sheereen</creator><creator>Butler, Peter J.</creator><creator>Walz, Thomas</creator><creator>Aksimentiev, Aleksei</creator><creator>Hou, Jun-li</creator><creator>Kumar, Manish</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150811</creationdate><title>Highly permeable artificial water channels that can self-assemble into two-dimensional arrays</title><author>Shen, Yue-xiao ; Si, Wen ; Erbakan, Mustafa ; Decker, Karl ; De Zorzi, Rita ; Saboe, Patrick O. ; Kang, You Jung ; Majd, Sheereen ; Butler, Peter J. ; Walz, Thomas ; Aksimentiev, Aleksei ; Hou, Jun-li ; Kumar, Manish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-ec24d1b21c2a6de498ed15be442a59697512ecf9b69f4d2712a6e27a9bfc277f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aquaporins</topic><topic>Aquaporins - chemistry</topic><topic>Biological Sciences</topic><topic>Ion Channels - chemistry</topic><topic>Ions</topic><topic>Membrane separation</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecules</topic><topic>Nanotubes, Carbon</topic><topic>Peptides - chemistry</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Unilamellar Liposomes - chemistry</topic><topic>Water</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yue-xiao</creatorcontrib><creatorcontrib>Si, Wen</creatorcontrib><creatorcontrib>Erbakan, Mustafa</creatorcontrib><creatorcontrib>Decker, Karl</creatorcontrib><creatorcontrib>De Zorzi, Rita</creatorcontrib><creatorcontrib>Saboe, Patrick O.</creatorcontrib><creatorcontrib>Kang, You Jung</creatorcontrib><creatorcontrib>Majd, Sheereen</creatorcontrib><creatorcontrib>Butler, Peter J.</creatorcontrib><creatorcontrib>Walz, Thomas</creatorcontrib><creatorcontrib>Aksimentiev, Aleksei</creatorcontrib><creatorcontrib>Hou, Jun-li</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yue-xiao</au><au>Si, Wen</au><au>Erbakan, Mustafa</au><au>Decker, Karl</au><au>De Zorzi, Rita</au><au>Saboe, Patrick O.</au><au>Kang, You Jung</au><au>Majd, Sheereen</au><au>Butler, Peter J.</au><au>Walz, Thomas</au><au>Aksimentiev, Aleksei</au><au>Hou, Jun-li</au><au>Kumar, Manish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly permeable artificial water channels that can self-assemble into two-dimensional arrays</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-08-11</date><risdate>2015</risdate><volume>112</volume><issue>32</issue><spage>9810</spage><epage>9815</epage><pages>9810-9815</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(±0.3) × 10−14cm³/s or 3.5(±1.0) × 10⁸ water molecules per s, which is in the range of AQPs (3.4∼40.3 × 10⁸ water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 10⁸ water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼10⁷ water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼2.6 × 10⁵ pores per μm²) is two orders of magnitude higher than that of CNT membranes (0.1∼2.5 × 10³ pores per μm²). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26216964</pmid><doi>10.1073/pnas.1508575112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (32), p.9810-9815
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1508575112
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aquaporins
Aquaporins - chemistry
Biological Sciences
Ion Channels - chemistry
Ions
Membrane separation
Models, Molecular
Molecular Dynamics Simulation
Molecules
Nanotubes, Carbon
Peptides - chemistry
Permeability
Physical Sciences
Unilamellar Liposomes - chemistry
Water
Water - chemistry
title Highly permeable artificial water channels that can self-assemble into two-dimensional arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20permeable%20artificial%20water%20channels%20that%20can%20self-assemble%20into%20two-dimensional%20arrays&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Shen,%20Yue-xiao&rft.date=2015-08-11&rft.volume=112&rft.issue=32&rft.spage=9810&rft.epage=9815&rft.pages=9810-9815&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1508575112&rft_dat=%3Cjstor_cross%3E26464780%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1704124111&rft_id=info:pmid/26216964&rft_jstor_id=26464780&rfr_iscdi=true