Highly permeable artificial water channels that can self-assemble into two-dimensional arrays

Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-08, Vol.112 (32), p.9810-9815
Hauptverfasser: Shen, Yue-xiao, Si, Wen, Erbakan, Mustafa, Decker, Karl, De Zorzi, Rita, Saboe, Patrick O., Kang, You Jung, Majd, Sheereen, Butler, Peter J., Walz, Thomas, Aksimentiev, Aleksei, Hou, Jun-li, Kumar, Manish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(±0.3) × 10−14cm³/s or 3.5(±1.0) × 10⁸ water molecules per s, which is in the range of AQPs (3.4∼40.3 × 10⁸ water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 10⁸ water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼10⁷ water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼2.6 × 10⁵ pores per μm²) is two orders of magnitude higher than that of CNT membranes (0.1∼2.5 × 10³ pores per μm²). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1508575112