Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31 comet
The mitotic checkpoint system has an important role to ensure accurate segregation of chromosomes in mitosis. This system regulates the activity of the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) by the formation of a negatively acting Mitotic Checkpoint Complex (MCC). When the che...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-08, Vol.111 (33), p.12019-12024 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mitotic checkpoint system has an important role to ensure accurate segregation of chromosomes in mitosis. This system regulates the activity of the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) by the formation of a negatively acting Mitotic Checkpoint Complex (MCC). When the checkpoint is satisfied, MCC is disassembled, but the mechanisms of MCC disassembly are not well understood. We show here that the ATP-hydrolyzing enzyme Thyroid Receptor Interacting Protein 13 (TRIP13), along with the MCC-targeting protein p31
comet
, promote the disassembly of the mitotic checkpoint complexes and the inactivation of the mitotic checkpoint. The results reveal an important molecular mechanism in the regulation of APC/C by the mitotic checkpoint.
The mitotic (or spindle assembly) checkpoint system delays anaphase until all chromosomes are correctly attached to the mitotic spindle. When the checkpoint is active, a Mitotic Checkpoint Complex (MCC) assembles and inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C). MCC is composed of the checkpoint proteins Mad2, BubR1, and Bub3 associated with the APC/C activator Cdc20. When the checkpoint signal is turned off, MCC is disassembled and the checkpoint is inactivated. The mechanisms of the disassembly of MCC are not sufficiently understood. We have previously observed that ATP hydrolysis is required for the action of the Mad2-binding protein p31
comet
to disassemble MCC. We now show that HeLa cell extracts contain a factor that promotes ATP- and p31
comet
-dependent disassembly of a Cdc20–Mad2 subcomplex and identify it as Thyroid Receptor Interacting Protein 13 (TRIP13), an AAA-ATPase known to interact with p31
comet
. The joint action of TRIP13 and p31
comet
also promotes the release of Mad2 from MCC, participates in the complete disassembly of MCC and abrogates checkpoint inhibition of APC/C. We propose that TRIP13 plays centrally important roles in the sequence of events leading to MCC disassembly and checkpoint inactivation. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1412901111 |