Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO)
Although it is widely known that trimethylamine N-oxide (TMAO), an osmolyte used by nature, stabilizes the folded state of proteins, the underlying mechanism of action is not entirely understood. To gain further insight into this important biological phenomenon, we use the C≡N stretching vibration o...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-06, Vol.111 (23), p.8476-8481 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although it is widely known that trimethylamine N-oxide (TMAO), an osmolyte used by nature, stabilizes the folded state of proteins, the underlying mechanism of action is not entirely understood. To gain further insight into this important biological phenomenon, we use the C≡N stretching vibration of an unnatural amino acid, p -cyano-phenylalanine, to directly probe how TMAO affects the hydration and conformational dynamics of a model peptide and a small protein. By assessing how the lineshape and spectral diffusion properties of this vibration change with cosolvent conditions, we are able to show that TMAO achieves its protein-stabilizing ability through the combination of (at least) two mechanisms: (i) It decreases the hydrogen bonding ability of water and hence the stability of the unfolded state, and (ii) it acts as a molecular crowder, as suggested by a recent computational study, that can increase the stability of the folded state via the excluded volume effect. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1403224111 |