Anuran radiations and the evolution of tadpole morphospace
Anurans (frogs and toads) are unique among land vertebrates in possessing a free-living larval stage that, parallel to adult frogs, diversified into an impressive range of ecomorphs. The tempo and mode at which tadpole morphology evolved through anuran history as well as its relationship to lineage...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-05, Vol.108 (21), p.8731-8736 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anurans (frogs and toads) are unique among land vertebrates in possessing a free-living larval stage that, parallel to adult frogs, diversified into an impressive range of ecomorphs. The tempo and mode at which tadpole morphology evolved through anuran history as well as its relationship to lineage diversification remain elusive. We used a molecular phylogenetic framework to examine patterns of morphological evolution in tadpoles in light of observed episodes of accelerated lineage diversification. Our reconstructions show that the expansion of tadpole morphospace during the basal anuran radiation in the Triassic/Early Jurassic was unparalleled by the basal neobatrachian radiation in the Late Jurassic/Early Cretaceous or any subsequent radiation in the Late Cretaceous/Early Tertiary. Comparative analyses of radiation episodes indicate that the slowdown of morphospace expansion was caused not only by a drop in evolutionary rate after the basal anuran radiation but also by an overall increase in homoplasy in the characters that did evolve during later radiations. The overlapping sets of evolving characters among more recent radiations may have enhanced tadpole diversity by creating unique combinations of homoplastic traits, but the lack of innovative character changes prevented the exploration of fundamental regions in morphospace. These complex patterns transcend the four traditionally recognized tadpole morphotypes and apply to most tissue types and body parts. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1100633108 |