p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage
Three forms of cell death have been described: apoptosis, autophagic cell death, and necrosis. Although genetic and biochemical studies have formulated a detailed blueprint concerning the apoptotic network, necrosis is generally perceived as a passive cellular demise resulted from unmanageable physi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-01, Vol.106 (4), p.1093-1098 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three forms of cell death have been described: apoptosis, autophagic cell death, and necrosis. Although genetic and biochemical studies have formulated a detailed blueprint concerning the apoptotic network, necrosis is generally perceived as a passive cellular demise resulted from unmanageable physical damages. Here, we conclude an active de novo genetic program underlying DNA damage-induced necrosis, thus assigning necrotic cell death as a form of "programmed cell death." Cells deficient of the essential mitochondrial apoptotic effectors, BAX and BAK, ultimately succumbed to DNA damage, exhibiting signature necrotic characteristics. Importantly, this genotoxic stress-triggered necrosis was abrogated when either transcription or translation was inhibited. We pinpointed the p53-cathepsin axis as the quintessential framework underlying necrotic cell death. p53 induces cathepsin Q that cooperates with reactive oxygen species (ROS) to execute necrosis. Moreover, we presented the in vivo evidence of p53-activated necrosis in tumor allografts. Current study lays the foundation for future experimental and therapeutic discoveries aimed at "programmed necrotic death." |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0808173106 |