CD4 T cells, lymphopenia, and IL-7 in a multistep pathway to autoimmunity
There are many inhibitory mechanisms that function at the cellular and molecular levels to maintain tolerance. Despite this, self-reactive clones escape regulatory mechanisms and cause autoimmunity in certain circumstances. We hypothesized that the same mechanisms that permit T cells to expand durin...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-02, Vol.105 (8), p.2999-3004 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are many inhibitory mechanisms that function at the cellular and molecular levels to maintain tolerance. Despite this, self-reactive clones escape regulatory mechanisms and cause autoimmunity in certain circumstances. We hypothesized that the same mechanisms that permit T cells to expand during homeostatic proliferation may inadvertently promote autoimmunity under certain conditions. One major homeostatic cytokine is IL-7, and studies have linked it or its receptor to the development of multiple sclerosis and other autoimmune diseases. We show in a model of β-islet cell self-reactivity that the transfer of activated autoreactive CD4 T cells can prime and expand endogenous autoreactive CD8 T cells in a CD28- and CD40-dependent manner through the licensing of dendritic cells. Despite this, mice do not develop diabetes. However, the provision of exogenous IL-7 or the physiological production of IL-7 associated with lymphopenia was able to profoundly promote the expansion of self-reactive clones even in the presence of regulatory T cells. Autoimmune diabetes rapidly ensued with CD4 help and the subsequent activation of CD8 T cells, which contributed to disease progression. With the advent of many biologicals targeting TNFα, IL-6, and IL-1 and their effective use in the treatment of autoimmune diseases, we propose that IL-7 and its receptor may be promising targets for biological agents in the treatment of autoimmunity. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0712135105 |