Rhomboid Protease AarA Mediates Quorum-Sensing in Providencia stuartii by Activating TatA of the Twin-Arginine Translocase

The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and is required for the production of an unknown quorum-sensing molecule. In a screen to identify rhomboid-encoding genes from Proteus mirabilis, tatA was identified as a multicopy suppressor a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-01, Vol.104 (3), p.1003-1008
Hauptverfasser: Stevenson, Lindsay G., Strisovsky, Kvido, Clemmer, Katy M., Bhatt, Shantanu, Freeman, Matthew, Rather, Philip N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and is required for the production of an unknown quorum-sensing molecule. In a screen to identify rhomboid-encoding genes from Proteus mirabilis, tatA was identified as a multicopy suppressor and restored extracellular signal production as well as complementing all other phenotypes of a Prov. stuartii aarA mutant. TatA is a component of the twin-arginine translocase (Tat) protein secretion pathway and likely forms a secretion pore. By contrast, the native tatA gene of Prov. stuartii in multicopy did not suppress an aarA mutation. We find that TatA in Prov. stuartii has a short N-terminal extension that was atypical of TatA proteins from most other bacteria. This extension was proteolytically removed by AarA both in vivo and in vitro. A Prov. stuartii TatA protein missing the first 7 aa restored the ability to rescue the aarA-dependent phenotypes. To verify that loss of the Tat system was responsible for the various phenotypes exhibited by an aarA mutant, a tatC-null allele was constructed. The tatC mutant exhibited the same phenotypes as an aarA mutant and was epistatic to aarA. These data provide a molecular explanation for the requirement of AarA in quorum-sensing and uncover a function for the Tat protein export system in the production of secreted signaling molecules. Finally, TatA represents a validated natural substrate for a prokaryotic rhomboid protease.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0608140104