Monomer adds to preformed structured oligomers of Aβ-peptides by a two-stage dock-lock mechanism

Nonfibrillar soluble oligomers, which are intermediates in the transition from monomers to amyloid fibrils, may be the toxic species in Alzheimer's disease. To monitor the early events that direct assembly of amyloidogenic peptides we probe the dynamics of formation of (Aβ₁₆₋₂₂)n by adding a mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-01, Vol.104 (1), p.111-116
Hauptverfasser: Nguyen, Phuong H, Li, Mai Suan, Stock, Gerhard, Straub, John E, Thirumalai, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonfibrillar soluble oligomers, which are intermediates in the transition from monomers to amyloid fibrils, may be the toxic species in Alzheimer's disease. To monitor the early events that direct assembly of amyloidogenic peptides we probe the dynamics of formation of (Aβ₁₆₋₂₂)n by adding a monomer to a preformed (Aβ₁₆₋₂₂)n₋₁ (n = 4-6) oligomer in which the peptides are arranged in an antiparallel β-sheet conformation. All atom molecular dynamics simulations in water and multiple long trajectories, for a cumulative time of 6.9 μs, show that the oligomer grows by a two-stage dock-lock mechanism. The largest conformational change in the added disordered monomer occurs during the rapid ([almost equal to]50 ns) first dock stage in which the β-strand content of the monomer increases substantially from a low initial value. In the second slow-lock phase, the monomer rearranges to form in register antiparallel structures. Surprisingly, the mobile structured oligomers undergo large conformational changes in order to accommodate the added monomer. The time needed to incorporate the monomer into the fluid-like oligomer grows even when n = 6, which suggests that the critical nucleus size must exceed six. Stable antiparallel structure formation exceeds hundreds of nanoseconds even though frequent interpeptide collisions occur at elevated monomer concentrations used in the simulations. The dock-lock mechanism should be a generic mechanism for growth of oligomers of amyloidogenic peptides.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0607440104