Quantum Criticality in Ferromagnetic Single-Electron Transistors

Considerable evidence exists for the failure of the traditional theory of quantum critical points, pointing to the need to incorporate novel excitations. The destruction of Kondo entanglement and the concomitant critical Kondo effect may underlie these emergent excitations in heavy fermion metals (a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-12, Vol.102 (52), p.18824-18829
Hauptverfasser: Kirchner, Stefan, Zhu, Lijun, Si, Qimiao, Natelson, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Considerable evidence exists for the failure of the traditional theory of quantum critical points, pointing to the need to incorporate novel excitations. The destruction of Kondo entanglement and the concomitant critical Kondo effect may underlie these emergent excitations in heavy fermion metals (a prototype system for quantum criticality), but the effect remains poorly understood. Here, we show how ferromagnetic single-electron transistors can be used to study this effect. We theoretically demonstrate a gate-voltage-induced quantum phase transition. The critical Kondo effect is manifested in a fractional-power-law dependence of the conductance on temperature (T). The AC conductance and thermal noise spectrum have related power-law dependences on frequency (ω) and, in addition, show an (ω/T scaling. Our results imply that the ferromagnetic nanostructure constitutes a realistic model system to elucidate magnetic quantum criticality that is central to the heavy fermions and other bulk materials with non-Fermi liquid behavior.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0509519102