Serine/Arginine-Rich Protein-Dependent Suppression of Exon Skipping by Exonic Splicing Enhancers

The 5′ and 3′ splice sites within an intron can, in principle, be joined to those within any other intron during pre-mRNA splicing. However, exons are joined in a strict 5′ to 3′ linear order in constitutively spliced pre-mRNAs. Thus, specific mechanisms must exist to prevent the random joining of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-04, Vol.102 (14), p.5002-5007
Hauptverfasser: Ibrahim, El Chérif, Schaal, Thomas D., Hertel, Klemens J., Reed, Robin, Maniatis, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 5′ and 3′ splice sites within an intron can, in principle, be joined to those within any other intron during pre-mRNA splicing. However, exons are joined in a strict 5′ to 3′ linear order in constitutively spliced pre-mRNAs. Thus, specific mechanisms must exist to prevent the random joining of exons. Here we report that insertion of exon sequences into an intron can inhibit splicing to the downstream 3′ splice site and that this inhibition is independent of intron size. The exon sequences required for splicing inhibition were found to be exonic enhancer elements, and their inhibitory activity requires the binding of serine/arginine-rich splicing factors. We conclude that exonic enhancers can act as barriers to prevent exon skipping and thereby may play a key role in ensuring the correct 5′ to 3′ linear order of exons in spliced mRNA.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0500543102