Release of Long-Range Tertiary Interactions Potentiates Aggregation of Natively Unstructured α-Synuclein

In idiopathic Parkinson's disease, intracytoplasmic neuronal inclusions (Lewy bodies) containing aggregates of the protein α-synuclein (αS) are deposited in the pigmented nuclei of the brainstem. The mechanisms underlying the structural transition of innocuous, presumably natively unfolded, αS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-02, Vol.102 (5), p.1430-1435
Hauptverfasser: Bertoncini, Carlos W., Jung, Young-Sang, Fernandez, Claudio O., Hoyer, Wolfgang, Griesinger, Christian, Jovin, Thomas M., Zweckstetter, Markus, Petsko, Gregory A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In idiopathic Parkinson's disease, intracytoplasmic neuronal inclusions (Lewy bodies) containing aggregates of the protein α-synuclein (αS) are deposited in the pigmented nuclei of the brainstem. The mechanisms underlying the structural transition of innocuous, presumably natively unfolded, αS to neurotoxic forms are largely unknown. Using paramagnetic relaxation enhancement and NMR dipolar couplings, we show that monomeric αS assumes conformations that are stabilized by long-range interactions and act to inhibit oligomerization and aggregation. The autoinhibitory conformations fluctuate in the range of nanoseconds to microseconds corresponding to the time scale of secondary structure formation during folding. Polyamine binding and/or temperature increase, conditions that induce aggregation in vitro, release this inherent tertiary structure, leading to a completely unfolded conformation that associates readily. Stabilization of the native, autoinhibitory structure of αS constitutes a potential strategy for reducing or inhibiting oligomerization and aggregation in Parkinson's disease.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0407146102